
Example-Driven Emulation of Lua Execution
with Recurrent Neural Networks

The University of Lincoln Corporate Guidelines 1.0 April 2013

Richard Coric
26414124

26414124@students.lincoln.ac.uk

School of Computer Science

College of Science

University of Lincoln

Submitted in partial fulfilment of the requirements for the
Degree of BSc(Hons) Computer Science

Supervisor Dr. Heriberto Cuayahuitl Portilla

May 2025

i

"It is our choices, not our abilities, that show who we truly are"

- Albus Dumbledore

ii

Acknowledgements

First and foremost, I would like to extend my utmost gratitude to my supervisor,

Dr Heriberto Cuayahuitl Portilla, for his support, expertise, and encouragement

throughout this dissertation. Heriberto’s knowledge and patience, while I learned

about the ins and outs of deep learning and language modelling, have been an in-

valuable asset throughout the year.

Secondly, I would like to thank the University of Lincoln for providing me with the

opportunity, experience and confidence to conduct this study. My time here was

filled with so many memories; the last three years have been both the most difficult

and enriching years of my life. I have met so many people, some of whom will remain

in my life forever. I am proud to say I have grown as a person since I began this

degree, and I will forever look back on this experience with awe.

To my amazing partner, Oliver, for supporting me and being there for me throughout

the research. For sitting through me talking his ears off about deep learning, for

wiping my tears when things didn’t go to plan. I couldn’t have done it without you.

Thank you.

I would also like to extend my gratitude to Olivia Rodrigo for making the Guts

album, which has gotten me through many periods of life, including battling with

CUDA errors and PyTorch matrix dimension misalignments.

Last, but not least, I would like to thank myself. For getting through this dissertation

with minimal breakdowns and for maintaining a deep interest in the subject matter,

which helped me keep motivated this year.

iii

Abstract

Traditionally, programs have been written and compiled strictly using a determ-

inistic approach via a compiler; such execution can be computationally expensive

and difficult to implement. Previous efforts like Codex and AlphaCode use large

transformer models with high inference and training times. This work evaluates, Re-

current Neural Networks (RNNs), and minimal RNN architectures with fast training

and inference times in emulating Lua execution by learning semantic embeddings,

and applies Mixtures of Experts (MoE), with Attention, trained via curriculum learn-

ing to enhance generalisation of these models. The study finds that standard models

overfit and struggle to learn meaningful patterns, and fail on complex examples

whereas minimal versions generalise better and fail on fewer examples. The research

finds that it was limited by dataset size and quality, leading to over-fitting and little

generalisation. Finally, it contextualises the trade-offs between inference efficiency

and output accuracy.

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Code Execution and Generation 1
1.1.2 Rationale . 2
1.1.3 Current Work . 3
1.1.4 Problems in Current Research 3

1.2 Aims & Objectives . 4
1.2.1 Objectives . 4

1.3 Dissertation Structure . 5

2 Literature Review 6
2.1 Background . 6

2.1.1 Recurrent Neural Networks 6
Standard RNN . 6
Long-Short Term Memory (LSTM) 7
Gated Recurrent Unit (GRU) 8
MinLSTM and MinGRU . 9

2.1.2 Mixture of Experts . 10
2.2 Related Works . 11
2.3 RNNs in Code-Related Tasks . 12

2.3.1 Methodologies . 12
2.3.2 Evaluation Metrics . 12
2.3.3 Limitations . 14

2.4 Transformer Models . 15
2.4.1 Limitations . 17

3 Requirements Analysis 19
3.1 Functional Requirements . 19
3.2 Non-Functional Requirements . 20

3.2.1 Hardware Considerations . 21

v

3.2.2 Software Requirements . 21

4 Design & Methodology 22
4.1 Research Philosophy . 22
4.2 Project Management . 22
4.3 System Design . 24

4.3.1 System Architecture . 24
4.4 Model Selection . 25

4.4.1 RNN . 25
4.4.2 LSTM . 25
4.4.3 GRU . 26
4.4.4 MinLSTM and MinGRU . 26
4.4.5 Mixture of Experts . 27
4.4.6 Attention . 27
4.4.7 Hyperparameter Tuning . 28

4.5 Dataset . 28
4.5.1 Curriculum Learning . 28
4.5.2 Lua Semantics . 29

4.6 Benchmarking . 30
4.6.1 Evaluation Metrics . 30
4.6.2 Baseline Models . 32

4.7 Overview of Experiments . 32
4.8 Ethical Considerations . 32
4.9 Risk Management . 33

5 Implementation 34
5.1 Development Environment and Tools 34
5.2 Language Parsing . 34

5.2.1 Building Data . 34
5.2.2 Semantic Tokenisation . 38

5.3 Dataset . 38
5.3.1 Data Splitting . 39
5.3.2 Building the Vocabulary . 41

5.4 Training Pipeline . 41
5.4.1 Language Model . 41

Training . 41
Sampling . 42
Check-pointing . 42

TABLE OF CONTENTS vi

5.4.2 Language Model Hyperparameter Tuning 43
5.5 Model Implementation . 43

5.5.1 RNN . 43
5.5.2 LSTM and GRU . 44
5.5.3 MinGRU and MinLSTM . 44
5.5.4 Mixture of Experts . 45
5.5.5 Attention . 45

5.6 Evaluation . 46
5.6.1 Sample K . 47

5.7 Challenges . 48
5.7.1 Overfitting . 48

Label Smoothing . 48
L2 Regularisation . 48
Dropout . 49
Teacher Forcing . 49
Learning Rate Scheduling . 49

5.7.2 Data Quality . 49

6 Results & Discussion 51
6.1 Computational Performance and Resources 51
6.2 Results . 52

6.2.1 RNN Performance . 52
6.2.2 GRU Performance . 53
6.2.3 LSTM Performance . 54
6.2.4 MinGRU Performance . 54
6.2.5 MinLSTM Performance . 55
6.2.6 Inference Times . 56
6.2.7 Example Outputs . 57

6.3 Discussion . 59
6.3.1 Dataset Collection . 59
6.3.2 Model Development . 60

Architecture Performance . 60
Mixture of Experts . 60
Alternative Architectures . 61

6.3.3 Interpreting Results . 61
Generalisation vs Overfitting 61
Comparison with Baselines . 61
Errors and Limitations . 62

TABLE OF CONTENTS vii

6.3.4 Implications for the Real world 63
6.3.5 Limitations of Study . 63

7 Conclusion 64
7.1 Findings . 64
7.2 Contributions . 65
7.3 Limitations . 65
7.4 Future Work . 66
7.5 Self-Reflection . 67

References 67

TABLE OF CONTENTS viii

List of Figures

1.1 An overview of the proposed architecture. Where RNN∗ stands for
any Recurrent Neural Network architecture. 4

2.1 A visual representation of how RNNs pass data. 6
2.2 LSTM Architecture . 7
2.3 MinLSTM Architecture . 10
2.4 A Visual Comparison of the LSTM and MinLSTM Architecture. . . . 11

4.1 Gantt Chart Outlining the time for each iteration and the due dates
for each milestone. 23

4.2 High-Level Class Diagram of the Implementation, of single unit archi-
tectures for testing, and the class that rely on them. Also highlighting
the libraries each class depends on. 24

4.3 Simple Lua program to print a message. 29
4.4 The equivalent S-Expression for the print statement in 4.3. 29

5.1 UML of Model Architectures and Parent Language Model, modelling
the interactions between different classes. 35

5.2 UML of the Tokenisation, Data and Evaluation part of the pipeline. . 36
5.3 Prompt template used to generate Lua code examples, where <>

indicate semantic features such as selection and looping. 36
5.4 Simple Program input-output example, of a string function running

inside a print statement. 36
5.5 Complex Program input-output example, to find the smallest and

highest numbers of an array. 37
5.6 Semantic Tokens for Figure 5.4 . 38
5.7 Semantic Tokens for Figure 5.5 . 39
5.8 Chart visualising the data splits and the number of samples per split,

using a 70-15-15 split and 677 data samples. 40

ix

5.9 Computation Graph illustrating the execution flow of the Mixture
of Experts Layer; the input is passed through a gating network and
experts separately, and then combined using a product and sum. . . . 46

5.10 Attention Computation, of the energy or compatibility score of QKT ,
the sqrt

√
dk, its SoftMax and finally scaling by values V 46

5.11 Python PyTorch Implementation of EM 47

6.1 Vanilla RNN shows reduced loss using 2 experts rather than none,
however, both models overfit the data. 52

6.2 GRU model training and validation loss plots. 53
6.3 LSTM model training and validation loss plots. 54
6.4 minGRU model training and validation loss plots. 55
6.5 minLSTM model training and validation loss plots. 55
6.6 RNN generation output, has string as the second token, however with

such a high perplexity, it can be said the model is guessing. 57
6.7 GRU generation, showed some improvement and generated some strings

and a number . 58
6.8 LSTM generation was similar to GRU except generated a function

call, which aligns with the increased perplexity. 58
6.9 MinLSTM generation, generated strings, identifiers and a function call

indicating high perplexity. 58
6.10 MinGRU output is very similar semantically to the MinLSTM. 59

LIST OF FIGURES x

List of Tables

2.1 Summary of research using RNNs in Code-Related Tasks, outlining
methods, the metrics used and the results achieved 13

2.2 Summary of Transformer Models in Code-Related Tasks 16

4.1 Architectural Variations on models tested. Values were updated from
the base model. Hidden state size (h), number of experts (expts), and
training steps. The model was evaluated on a Exact Match (EM),
F1 Score (F1), Sentence Similarity (SS), Pass@1 (P@1), Perplexity
(Perp), Recall (Rcl) and Precision (Prs). 33

6.1 Training times in minutes for each model by number of experts, and
the time per iteration . 51

6.2 Timings in Seconds for each step of the training pipeline 52
6.3 Experiment Results per model such that hidden state size (h), number

of experts (expts), and training steps. The model was evaluated on a
Exact Match (EM), F1 Score (F1), Sentence Similarity (SS), Pass@1
(P@1), Validation Perplexity (Perp), Recall (Rcl) and Precision (Prs). 56

6.4 Depicts Inference Time of each model expressed in seconds, with re-
spect to small and large code snippets. 57

6.5 Baseline Results for StarCoder and Qwen 2.5 Coder 62

xi

Chapter 1

Introduction

1.1 Motivation

1.1.1 Code Execution and Generation

Traditionally, programs written in any given programming language are written by

a human in a text editor or Integrated Development Environment (IDE), and then

passed to either a compiler or an interpreter. Both compilers and interpreters will use

a Lexer - a piece of software that takes text (in the form of a program) and outputs

a set of lexemes or tokens which represent the program. The next step after lexing

is syntactic analysis, this process converts the tokens into an internal intermediate

representation (IR) or Abstract Syntax Tree (AST), and keeps track of data in

virtual tables. It is then common for IR to be either interpreted or converted to

machine code through a virtual machine (VM) which emulates the operations of the

program, such as arithmetic and jump operations like loops, functions and selection.

Traditional code generation from a VM involves either rule-based parsing, where

machine code instructions are emitted from an IR or syntax tree. This approach is

often very strict and non-adaptive, meaning it is difficult to infer the intent from

examples.

While traditional execution pipelines rely on deterministic, manually designed sys-

tems, recent developments in neural language modelling have introduced a range of

approaches which instead learn from patterns in large code datasets. Modern mod-

els like Codex and GPT can generate and provide reasoning over code without the

1

need for a VM or explicit programming of the language grammar. This move has

sparked interest in exploring whether neural models can emulate the execution of a

program from examples rather than rules. However, most existing work focuses on

large, expensive-to-train transformer models.

1.1.2 Rationale

Neural networks continue to revolutionise various computer science domains, includ-

ing compiler development, with many works applying machine learning to compilers

(Chris Cummins, Grubisic, Baptiste et al., 2024; Leather and C. Cummins, 2020;

Imada and Katsuhiko Nakamura, 2008). This research aims to bridge this gap by

investigating whether smaller models like RNNs, can still be useful in such a field.

In addition to RNNs being smaller models, the LSTM gating mechanism could act

similarly to the idea of a virtual table in a compiler. The model could potentially

develop a mechanism to maintain a representation of variables in scope while atten-

uating those that have moved beyond the current scope.

The success of this work could lead to more adaptive implementations of program-

ming languages, with a potential application in domain-specific language develop-

ment and compiler optimisation. Training a neural network for such a purpose could

pose challenges due to its complex nature. However, Lua is an ideal candidate for

this research due to its widespread use in embedded systems and its simplicity. This

study pushes existing deep learning ideas towards language development, and in the

future, towards more adaptive computer systems.

Such a compiler could be applied to code playground software such as Quokka JS 1,

which provides instant in-editor code outputs - useful for debugging. A deep learning

approach would omit the complexity requirements of running the code to generate

an output, and would be able to provide feedback by inference. Computational

complexity is, in this way, shifted from language interpretation to model interference.
1https://quokkajs.com/

Introduction 2

https://quokkajs.com/

1.1.3 Current Work

Several studies have explored the use of RNNs for code-related tasks such as program

synthesis, code completion and error detection, using both word-level and character-

level models. Researchers have explored a range of architectures with varying levels

of effectiveness, most commonly LSTM, vanilla RNN, GRU or combinations forming

encoder-decoder architectures. These studies train models to learn and emulate

simple algorithms for copying, sorting, and reversing lists of numbers.

A number of researchers demonstrated that example-based learning – using input-

output pairs – gave the models sufficient information to learn the relation between

the input program and the output sequence. Training strategies often incorporate

curriculum or reinforcement learning to improve the model’s ability to generalise to

more complex scenarios.

1.1.4 Problems in Current Research

Despite the success on short sequences, many of these models fail to generalise to

longer, more complex input sequences. Longer sequences allow the model to use con-

text from an increasing number of time steps ago. In practice, this means variables

defined earlier in the program flow can be remembered for a longer time, making

tools for compiler-free compilation more accurate.

Additionally, many studies have found that models succeed in learning syntax but

fail in any semantic understanding. Language semantics give rise to understanding

what the code is doing without being influenced by any form of noise from syntax

or syntax sugar 2. Therefore, such a system could be made universal across multiple

programming languages - special semantics from semantically different languages can

be learned as extra rules on top of the compiler.

Introduction 3

RNN*Code
Examples

Embedding
Model

Output
Prediction

Figure 1.1: An overview of the proposed architecture. Where RNN∗ stands for any
Recurrent Neural Network architecture.

1.2 Aims & Objectives

This project aims to develop a system, outlined in Figure 1.1 that can, given examples

of code, predict the output of low (those with simple structures such as ‘print‘ and

‘if‘) and medium (those with more complex structures such as loops) and high (those

with functions and tables) complexity programs, assuming they terminate. This is

done to evaluate the effectiveness of the method.

1.2.1 Objectives

1. Collect a suitable and substantial enough dataset of at least 500 examples of

Lua code in order to train a machine-learning model.

2. Develop an LSTM model, embedding model and lexer for parsing Lua, and then

learn the model’s embeddings.

3. Evaluate and appraise other methods of achieving an SLM (Small Language

Model) compiler, which have already been researched.

4. Conduct a literature review to gain a critical understanding of work that has

already been done in this field.

5. Train different RNN models on embeddings created from examples of code and

outputs, allowing them to find patterns and predict the output of code.

(a) Focusing on standard RNNs, LSTM, GRUs, and minimal versions of RNN

and LSTM.

6. Test and evaluate the model based on new examples of Lua code, and perform

relevant evaluation metrics such as Perplexity and F1 Score.

2Syntax that is purely for readability rather than functionality of the program.

Introduction 4

1.3 Dissertation Structure

The remainder of this dissertation will focus on implementing and evaluating a range

of models for a subset of Lua programs. The next chapter will evaluate the state of

current research, looking more specifically at RNN and Transformer-based systems.

It determines where it falls short and how this research addresses these shortcomings.

Following this, Chapter Three will focus on the software and hardware requirement

analysis for this work. Chapter Four explains the methods and approaches behind

emulating Lua execution via neural network architectures; the next chapter, Chapter

Five, will give a technical overview of the implementation models and the training.

Chapter Six will analyse and provide the results of experiments run in this work,

concluding with the success and limitations of the approach in Chapter Seven.

Introduction 5

Chapter 2

Literature Review

2.1 Background

2.1.1 Recurrent Neural Networks

Standard RNN

X nn.Linear nn.Linear y(2)

Figure 2.1: A visual representation of how RNNs pass data.

The standard Recurrent Neural Network (RNN) is characterised by its feedback

connections wherein hidden states are propagated across sequential timesteps. The

network outputs recur, as illustrated by a perceptron: the output from the first

network (2.1) is passed as an input into the second (2.2). This is represented visually

as two Pytorch Linear Layers in Figure 2.1.

h(1) = σ(XW + B) (2.1)

y(2) = σ(h(1)W + B) (2.2)

6

ct

ht

Xt

+

σ ot

ft
i t ct

~
tanh

⊙ 

σ

⊙ 

σ tanh

⊙ 

ct-1

h t-1

Figure 2.2: LSTM Architecture

Long-Short Term Memory (LSTM)

RNN networks suffer from vanishing gradients because partial gradients become

smaller between layers during backpropagation, until their values do not affect the

output vector. To solve this, Hochreiter and Schmidhuber (1997) introduced the

Long-Short Term Memory architecture, which presents the Cell State along with its

hidden state. The LSTM works via a gating mechanism; different gates allow it to

read (input), write (output), and erase (forget) information.

f (t) = σ(Wfh(t−1) + Ufx(t) + bf) (2.3)

i(t) = σ(Wih
(t−1) + Uix

(t) + bi) (2.4)

o(t) = σ(Woh
(t−1) + Uox

(t) + bo) (2.5)

For a sequence of inputs x(t) at time step t, the LSTM computes several states: the

forget gate (2.3), which controls what information is kept and forgotten from the

previous cell state. The input gate (2.4) determines which information from the

new cell content is written to the cell state, and the output gate (2.5) controls what

information is written to the hidden state.

Literature Review 7

∼
c

(t) = tanh(Wch
(t−1) + Ucx

(t) + bc) (2.6)

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ∼
c (2.7)

h(t) = o(t) ⊙ tanh ∼
c

(t) (2.8)

Equation 2.6 computes the new content to be written, which becomes part of the cell

state computation (2.7) and part of the hidden state (2.8), responsible for reading

the output. The process is illustrated in Figure 2.2.

Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU), first introduced by Cho et al. (2014), represents

a significant refinement on the standard RNN architecture. It was designed as a

simplified alternative to the LSTM model, while maintaining the ability to learn

long-term dependencies through a gating mechanism.

rj = σ
(
[Wrx]j + [Urh⟨t−1⟩]j

)
(2.9)

zj = σ([Wzx]j + [Uzh⟨t−1⟩]j) (2.10)

h
⟨t⟩
j = zjh

⟨t−1⟩
j + (1 − zj)

∼
h

⟨t⟩

j (2.11)
∼
h

⟨t⟩

j = ϕ([Wx]j + [U(r ⊙ h⟨h−1⟩)]j) (2.12)

The study describes the activation for the j-th hidden layer as a computation through

a sequence of gates. First, the reset gate (equation 2.9) determines whether the

previous hidden states should be ignored with the current input vector; then the

update gate (equation 2.10) controls how much information the previous hidden

state will save to the current hidden state. The combination of these gates (equation

2.11) computes the current hidden state. For the candidate hidden state (equation

2.12), the common activation function (ϕ) is often a hyperbolic tangent function

(tanh).

Literature Review 8

MinLSTM and MinGRU

The previously mentioned RNN-based architectures are not parallelisable; consequently,

Feng, Tung, Ahmed et al. (2024) introduced minimal architectures with removed hid-

den states while incorporating normalisation techniques, thereby circumventing the

need for the computational drawbacks of Backpropagation Through Time (BPTT).

Blelloch (1990) uses the term prefix scan to refer to a special type of associative scan

algorithm which efficiently computes prefix sums in two steps known as up-sweep

and down-sweep. The computation broadly resembles that of the GRU hidden state

recurrence shown in equation 2.11. Its recurrence is dependent on the previous

hidden state ht−1 (equation 2.10), and therefore prefix scanning is not applicable,

since its inputs depend upon knowing all the outputs at once as opposed to over

time.

To use prefix scan, the study removed the dependency on the previous hidden state

(ht−1). It removed the reset gate entirely since it is no longer needed to control the

weight of the previous hidden state. An updated minGRU is defined as an update

gate (equation 2.14) and candidate hidden state (equation 2.15). In standard GRU

and LSTM models, the tanh function stabilises training and helps avoid vanishing

gradients; sigmoid activations are then applied to the hidden state. Eliminating

hidden states removes the need for the tanh activation, and increases the range of

the hidden states from h ∈ (−1, 1).

h
⟨t⟩
j = zjh

⟨t−1⟩
j + (1 − zj)

∼
h

⟨t⟩

j (2.13)

zj = σ([Wzx]j) (2.14)
∼
h

⟨t⟩

j = [Wx]j (2.15)

The authors also modified the LSTM architecture, shown in Figure 2.3, by removing

its hidden states and dropping the candidate state range restriction. Similarly, the

output gate is dropped because it scales the hidden state, which is no longer needed.

Literature Review 9

ht-1 ht

Xt

σ i t

ft

f’t

i’t

+

norm

⊙ ht

~

σ

norm

⊙ 

Figure 2.3: MinLSTM Architecture

The lack of an output gate results in the cell state and hidden state being equal, so

it is unnecessary, leaving only the hidden state (equations 2.19 and 2.16).

h(t) = f (t) ⊙ ht−1 + i(t) ⊙
∼
h

(t)
(2.16)

f (t) = σ(Wfx(t) + bf) (2.17)

i(t) = σ(Wix
(t) + bi) (2.18)

∼
h

(t)
= Whx(t) + bh (2.19)

2.1.2 Mixture of Experts

Jacobs et al. (1991) introduced a learning technique based on how the human brain

learns. The researchers called this an associative version of Competitive Learning, a

form of unsupervised Learning where Artificial Neural Network (ANN) nodes com-

pete for weight updates to a Subset of the data (Grossberg, 1987). Competitive

learning makes each neural node more specialised the deeper it gets in the network.

Associative learning is a concept that comes from Hebbian Theory (Hebb, 1950),

which explains how the brain learns - two neurons which repeatedly help each other

gain a stronger connection.

In deep learning, the researchers named this technique Mixture of Experts (MoE),

where different parts of a network train experts on specific subtasks, and a gating

network aims to select the most appropriate expert. Additionally, the researchers

created a method that picks only one expert per task by scaling the residual (dc −oc
i)

Literature Review 10

ct

ht

Xt

+

σ ot

ft
i t ct

~
tanh

⊙ 

σ

⊙ 

σ tanh

⊙ 

ct-1

h t-1

h t-1 ht

Xt

σ i t

ft

f’t

i’t

+

norm

⊙ ht

~

σ

norm

⊙ 

Figure 2.4: A Visual Comparison of the LSTM and MinLSTM Architecture.

by the weight of an expert’s contribution (pc
i) and outputting the whole output

vector. The loss function is shown in equation 2.20.

Ec =
∑

i

pc
i ||dc − oc

i ||2 (2.20)

2.2 Related Works

Prior to transformer models (Vaswani et al., 2017), Recurrent Neural Networks

(RNNs) were widely used for natural language processing (NLP) due to their ability

to process sequential data and their capability to learn longer-term dependencies

than Feed-Forward Networks.

There have been many improvements to RNNs, Hochreiter and Schmidhuber (1997)

addressed the issue of vanishing gradients and developed the Long-Short TermMemory

(LSTM) model, which can keep track of longer-term dependencies via a gating mech-

anism. Later, the Gated Recurrent Unit (GRU) was introduced as a simpler LSTM

architecture in an Encoder-Decoder RNN for Machine Translation.

The transformer model has been the standard for NLP tasks (Patwardhan, Marrone

and Sansone, 2023) ever since its introduction in 2017 (Vaswani et al., 2017). RNNs

continue to demonstrate usage in specific domains and can reach similar outcomes to

a transformer model with the added benefit of parallelisability (Feng, Tung, Ahmed

et al., 2024) by updating the architecture to remove hidden states, adding a normal-

Literature Review 11

isation element (this is illustrated in figure 2.4) thus removing the need for BPTT,

allowing the use of parallel algorithms such as parallel prefix-scan (Blelloch, 1990).

2.3 RNNs in Code-Related Tasks

Beyond NLP, RNNs have been used for compiler-like tasks since 2014 with the Neural

Turing Machine (Graves et al., 2014). Researchers employed various architectures

to achieve their objectives. Common models included standard RNNs, LSTMs, or a

combination to create an encoder-decoder structure (Burgueño et al., 2021; Graves

et al., 2014; Priya et al., 2017; Rahman, Watanobe and Keita Nakamura, 2020;

Zaremba, Mikolov et al., 2016).

2.3.1 Methodologies

Table 2.1 summarises research in code-related tasks using RNNs. It gives an overview

of the methods used by other researchers.

Past research looked at two main approaches to code prediction: Character-based

RNNs (Priya et al., 2017), where the model predicts the next character from a

probability distribution. Word-based models, in contrast, have full word tokens and

predict the next complete word. Results show that word-based RNNs achieve a

higher semantic accuracy (Burgueño et al., 2021) than character-based RNNs (Priya

et al., 2017). Supported by these findings, this research implements word-level RNNs

in order to attempt to generate more error-free code. Specifically, our model aims

to predict program output from a given input without directly executing the code.

2.3.2 Evaluation Metrics

Researchers commonly use accuracy to evaluate their models (Burgueño et al., 2021;

Priya et al., 2017; Zaremba and Sutskever, 2014; Zaremba, Mikolov et al., 2016).

Accuracy tells us the fraction of correct examples but lacks any notion of semantic

correctness; this can be an issue for code generation because there are often multiple

correct solutions. Better methods involve using Bilingual Evaluation Understudy

Literature Review 12

Table 2.1: Summary of research using RNNs in Code-Related Tasks, outlining meth-
ods, the metrics used and the results achieved

Author Dataset Method Metric Results

Graves. et al.
(2014)

A mix of data
of simple
algorithms.

RNN with external
memory, supervised
learning, 3 layer.

Bits-per-sequence
Able to generate
code, dataset size
had no impact.

Wojciech and
Sutskever
(2015)

Set of custom
made, Python like
Programs.

LSTM, and curriculum
learning. Accuracy

99% accuracy for
addition, LSTM
learned programs.

Reed. et al.
(2015)

A set of programs
custom made.

NPI (Neural Programmer
Interpreter) - an LSTM
based network with
arguments and Supervised
Learning. Also used
Curriculum Learning.

Ability to
generalise and
per-sequence
accuracy

Was able to learn
to execute
complex
programs, <90%
accuracy in most
cases.

Wojciech. et al.
(2016)

Short python
programs.

RNN controller: LSTM
and GRU, Reinforcement
Learning

Accuracy.

Q-Learning failed
on most tasks, but
succeeded with
Watkins and
Dynamic Count.

Balog. et al.
(2017)

Custom made
DSL.

Encoder Feed Forward,
Decoder RNN.

Time to find a
program.

DeepCoder showed
performance speed
ups up to 475×

Priya R. et al.
(2017)

Open Source from
Github (Python,
Java, C#).

Character-based RNN
512 hidden state.

Loss and
Accuracy.

Performed well,
sometimes
generated code
with errors, RNN
were effective.

Rahman. et al.
(2020)

Code from Oj
competitive
programming
system.

LSTM and Attention. Precision,
Recall, F1.

Attention
improved accuracy
from 31% to 62%
and approx. 0.9 F1

Laich L. et al.
(2020)

Rico dataset
of PlayStore apps. MLP, CNN and RNN.

Existing
Research and
Accuracy

Improved from 35%
to 71% accuracy.

Burgueño. et al.
(2021)

Custom Dataset
using GANs
(Generative Adversarial
Networks).

LSTM + Attention, with
Dropout and
Regularisation.

Accuracy and
training time.

0.94 accuracy after
increasing dataset
size, this was also
proportional to train
time.

Literature Review 13

(BLEU) to measure the token-level similarity (Burgueño et al., 2021), providing

additional insight into the performance.

Researchers used both execution-based and functional correctness metrics. Balog

et al. (2017) computed the time taken to find a program – however, most struggle

to evaluate for functional correctness. For instance, Laich, Bielik and Vechev (2020)

used human feedback to find how many corrections a user would need to make for

the program to be correct.

This research aims to use a balance of metrics to give an overview of how well the

model performs. This will include Loss, Perplexity and Sentence Similarity.

2.3.3 Limitations

Current research has a few limitations; one limitation is that studies reported diffi-

culty producing compilable and error-free code (Priya et al., 2017). They found that

this did not improve with more data. This is important for tools that aid with code

because generating error-free code is vital, so as not to hinder the user. One way

this research addresses this is Syntax-aware training, which involves using annotated

embeddings or semantic embeddings to allow the model to associate semantic con-

cepts with the output.

Other researchers had issues with the dataset size and quality. Burgueño et al.

(2021) found that the dataset bottlenecks the model. They proposed using GANs

(Generative Adversarial Networks) to generate Synthetic data. However, Balog et al.

(2017) found that synthesised programs may sometimes be too simplistic and fail to

address real-world applications. Other researchers had issues with the dataset size

and quality (Burgueño et al., 2021; Rahman, Watanobe and Keita Nakamura, 2020;

Reed and Freitas, 2015). Variety in the dataset is important for real-world problems

because it increases the scope in which they can be applied, thus benefiting more

people. This research aims to use Large Language Models (LLMs) for Data Aug-

mentation to generate synthetic data, which will be used to train the model, using

Literature Review 14

prompting techniques to generate a larger range of data.

Another way current models are limited is that they fail to understand the Semantic

Meaning of code, which affects any error detection or prediction tasks (Rahman,

Watanobe and Keita Nakamura, 2020). To address semantic understanding, this

research aims to use Semantic Embeddings to encode the program’s meaning or its

AST (Abstract Syntax Tree) into the training data. This will allow the model to

understand the meaning of the code and not just the syntax.

RNNs also tend to fail to generalise for longer inputs (Reed and Freitas, 2015) or

follow a program specification too closely (Laich, Bielik and Vechev, 2020). This

can also lead to the model memorising the dataset rather than learning the under-

lying patterns (Zaremba and Sutskever, 2014). This research aims to address this

by using Curriculum Learning, which involves training the model on simpler tasks

first and gradually increasing the complexity of the tasks. Curriculum learning has

been shown to improve generalisation and learning speed (Reed and Freitas, 2015,

Zaremba and Sutskever, 2014).

2.4 Transformer Models

The transformer architecture is an improvement upon sequencing models like RNNs.

RNN-based models have been shown to struggle with long-distance dependencies

and are inherently difficult to parallelise. Its architecture consists of an encoder and

a decoder block, where the encoder processes the input sequence, and the decoder

generates the output sequence. The transformer model uses attention mechanisms

to learn the dependencies between words in a sentence. This allows the model to

learn long-range dependencies more effectively than RNNs.

Additionally, the transformer model is highly parallelisable because the model does

not process the input in sequence but all at once.

Transformer models have recently been used for code generation, completion, and

Literature Review 15

Table 2.2: Summary of Transformer Models in Code-Related Tasks

Author Dataset Method Metric Results

Bunel. et al
(2016)

Generated I/O Examples
for Swap Increment
Addition and Sort

Neural Network
ANC

correctness, halting,
efficiency, and confidence,
weighted sum to form the
total loss function

adapts to simple
generic algorithms

Chen. et al.
(2021)

Python GitHub
Repositories

Temperature,
Transformer

pass@k - number of
samples that pass per
problem, Human Eval.

improved pass rate
from 28.8% to 70.2%
on the HumanEval
dataset.

D. O. Bui. et al.
(2023)

HumanEval,
CodeXGLUE,
Human Input

GPT
Transformer

pass@k
CodeBLEU

a library which makes
it easy to manipulate
code models.

Cummins. et al.
(2023)

A suite of benchmark
datasets of C/C++
code examples

Transformer
BPE

BLEU
and Success Rate.

90.5% success rate
0.952 BLEU

Munley. et al.
(2023)

OpenACC and their own
Dataset

GPT, DeepSeek,
CodeLlama +
RAG

GPU Time Taken, and
Pass/Fail Rates.

Tested various
models, most passed
the majority of tasks.

Gu. Qiuhan
(2023)

Processing Go Code
using Tree Sitter

CodeT5,
Transformer

Code coverage and the
percentage of syntax error
and undefined behaviour

3.38% coverage,
2.79% syntax errors,
0% of undefined
behaviour.

Kim. et al.
(2023)

HotpotQA, Movie
Recommendation,
ParallelQA and other
benchmark tasks.

Transformers,
GPT

Accuracy and Latency,
Success Rate

latency speed up 3.7x,
cost savings of up to
6.7x, and accuracy
improvement of up
to ∼9%

Li, L. et al.
(2024)

MAmmoTH model,
18,000 examples from
GSM8K, 3,000 from
NumGLUE, and 15,000
from MATH.

Attention, CoT,
PoT, Reinforcement
Learning, Transformer,
Llama and GPT

Base-Models and
out-of-domain
datasets (one that differs
a lot from the
training data).

Improvement of 6.5%
on Llama-Base model,
4.3% on MistralBase
model across 8
mathematical
calculation datasets.

Grubisic. et al.
(2024)

LLVM IR (Intermediate
Representation). Llama - Transformer

Track % improvement over
Random Sampling, Greedy
Decoding, and Nucleus

2.87% to 5%
improvement.

Hu. et al.
(2024)

Sintel movie dataset and
Custom Made dataset.

Multimodal Learning,
GPT-V (GPT Vision).

CLIP Similarity Score
(Text-to-Image metric),
Human Evaluation

5.6 CLIP on
BlenderGPT baseline,
and 88.9 on Scene
Craft

Chae. et al.
(2024)

Big-Bench Hard
Reasoning Tasks.

GPT3 and CodeLlama,
Zero-Shot CoT.

Improvement over
Baseline Models

11% improvement
over GPT3.5-Turbo

Cummins. et al.
(2024)

CodeLlama LLVM IR.
MiBench Benchmark CodeLlama as a Base.

Vary for tasks: Perplexity,
BLEU, Success Rate,
pass@k

Outperforms in 61%
of cases, significant
improvement over
baseline models.

Literature Review 16

summarisation tasks. These are summarised in Table 2.2. Most authors fine-tune

pre-trained models like GPT3 for specific tasks or use existing models as a base.

This was effective in most cases, where most research showed a significant improve-

ment compared to baseline models. Comparing against baseline models allowed past

research to put results in context with other current models.

2.4.1 Limitations

Transformer-based approaches tended to suffer from similar limitations to RNN-

based approaches. Researchers found that pre-trained models are biased towards

specific languages or frameworks when trained on various languages (Bui et al.,

2023; Chen et al., 2021). This research only uses Lua examples and thus should not

suffer from this level of bias. However, it should be noted that the model may favour

certain implementations over others; to mitigate this, the model will be trained on

a diverse dataset consisting of many different ways to achieve the same result.

Additionally, models struggled with processing large input sequences (Chris Cum-

mins, Grubisic, Elhoushi et al., 2023) and solved it using a restricted input; however,

as proposed in section 2.2.3, curriculum learning is a viable approach to train the

model on increasing input sizes. As well as input size, the models produced are

algorithmically complex and sequential (Grubisic et al., 2024), making it impossible

to train in parallel.

The use of MinLSTM and MinGRU will allow for longer sequences and faster training

due to their simplified and, therefore, parallelisable nature (Feng, Tung, Ahmed et

al., 2024).

MinLSTM and MinGRU architectures have been shown to outperform most RNN

architectures, and reach performance comparable to that of large transformer models

Feng, Tung, Ahmed et al. (2024). These new architectures have been tested in a min-

imal range of fields, and their current application spans foundation modelling (Sieber

et al., 2024), language model optimisation (De et al., 2024; Akyürek et al., 2024;

Afzal et al., 2025), which took advantage of the model’s parallelisability. Addition-

ally, their use in State Space Modelling (Liu and Li, 2024; Parnichkun et al., 2024)

Literature Review 17

involves handling dynamic inputs such as time-series analysis, and physics-informed

machine learning (Hu et al., 2024). This study aims to explore their application in

code generation.

Literature Review 18

Chapter 3

Requirements Analysis

This chapter will highlight the study’s requirements, which are split into functional

and non-functional requirements. Functional requirements are the core features the

software needs to meet, and non-functional requirements are the properties required

for the system to run or to enhance it.

3.1 Functional Requirements

Dataset: A dataset of Lua code snippets is required. This then needs to be processed

by running through a Lua compiler, ensuring there are no errors in the code and

that we can generate an output. The programs must be error-free for this study to

effectively evaluate the model’s ability to generate output, rather than detect errors.

Preprocessor: Code snippets needs to be parsed and processed, therefore part

of the software is needed to parse Lua programs into tokens, from which program

embeddings are generated. This is necessary because the process cleans the data and

removes any syntactic noise, for examples brackets and other punctuation that add

no semantic meaning, from the program.

Data Splitting: Data must be split into 3 sets - the training, testing and validation

sets. In Machine Learning, the training set allows the model to learn patterns in

the data, and the testing set is used after training to evaluate how well the model

performs on unseen data. Lastly, the validation set is used during hyperparameter

tuning to provide an unbiased set of data to validate parameters. This is often done

19

in an 70/15/15 split, meaning 70% of the data is used for training, and the test and

validation sets become 15% of the data.

Models: Once the data is split, it needs to be passed into a model. This study

aims to implement and train an RNN, LSTM, GRU, MinGRU and MinLSTM model

along with utility layers such as Mixture of Experts. A wide range of RNN models

gives a better overview of how well RNNs can emulate Lua compilation.

Language Model: A universal language model training pipeline, which allows for

swapping of the underlying architecture, is vital for testing each model fairly with

no bias towards certain parameters and training pipelines.

Hyperparamter Tuning: Once all the models are implemented, it is required that

the correct parameters are used to achieve the best performance. The implementa-

tion must support tuning of the learning rate, number of input/ hidden layers, and

the number of iterations to train the model for.

Evaluation: After training, the model must be evaluated to gauge its performance

on unseen data. This should be done using a variety of metrics such as F1 Score,

Pass@k and Sentence Similarity. Using a range of metrics indicates how well different

aspects of the model are performing - perplexity indicates how sure the model is of

its prediction, whereas pass@k notions towards the percentage of passing test cases.

Baselines: Finally, this study will compare how well the model is doing against other

baselines, for instance, existing Large Language models. As a result, this study is

put into perspective in terms of current state-of-the-art models.

3.2 Non-Functional Requirements

Data Visualisation: This research will use a range of metrics along with Loss Plots

to present the findings and compare against other models or architectures. A table

is also needed to present the configurations and performance of each model.

Requirements Analysis 20

3.2.1 Hardware Considerations

The training of the models will be run locally on a single NVIDIA GeForce RTX

3060 GPU, with 12.11GB VRAM and 3584 CUDA Cores. The experiments will run

on a desktop with the following specifications:

• Operating System: Windows 11

• CPU: Intel core i5-12400F (6 cores, 12 threads)

• RAM: 16GB DDR4

3.2.2 Software Requirements

A range of software is required for this study:

• Visual Studio Code: a code editor.

• PyTorch v2.5.0 with CUDA: a Python Deep Learning Library.

• Optuna: hyperparameter tuning library.

• Matplotlib: Plotting data on charts for visualisation.

• Python3: The Python Programming Language.

• Browser: To interface with ChatGPT for data augumentation.

• Treesitter: A Parsing library along with the Lua Grammar DLL.

Requirements Analysis 21

Chapter 4

Design & Methodology

4.1 Research Philosophy

This chapter introduces the methods used to test whether RNNs can emulate com-

pilation. First, looking at how the system will be designed, followed by a justification

of the model selection. Finally, the evaluation strategies and ethics will be discussed.

Lua emulation will be evaluated by testing a range of models on the same input-

output dataset to determine how well each model performs on the data, highlighting

the differences in architecture rather than any other factors like training time and

data difficulty.

4.2 Project Management

The software design will follow the iterative model. This model involves starting

with a small subset of the requirements and then integrating them until all the

requirements are met.

In this Software Development Lifecycle (SLDC), the project starts with an incom-

plete software specification and implements it. The requirements are then iterated

upon until the software is complete. This research will first implement a basic

character-based RNN to complete the word "hello". Once that requirement is met,

it is iterated to predict full words and sentences. Figure 4.1 outlines each iteration

in terms of milestones with the date they are planned to be met.

22

W
BS N

UM
BER

TA
SK TITLE

M
ILESTO

N
E

DUE DATE

W
EEK

PH
A

SE 1
PH

A
SE 2

PH
A

SE 3
PH

A
SE 4

PH
A

SE 5
PH

A
SE 6

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

1
Project Planning and Proposal

1.6
Proposal H

and In
A Project Proposal

31/10/24

2
Data Engineering

2.1
Collecting Data - Code Snippets

A dataset
/

2.2
Data Cleaning

A clean dataset
/

2.4
Data Em

bedding
A set of code em

beddings
/

3
Softw

are and M
achine Learning

3.1
Setting up LSTM

A usable LSTM
 netw

ork
/

3.2
Setting up RN

N
A usable RN

N
 netw

ork
/

3.3
Setting up M

iniLSTM
usable M

iniLSTM
 netw

ork
/

3.4
Setting up M

iniRN
N

uable m
iniRN

N
 netw

ork
/

3.5
Testing each Archictecture

a com
pilable output

/

4
Interim

 Report

4.3
Final H

and In
literacy report sum

m
ary

30/01/24

5
M

odel Training and Tuning

5.1
Cross Validation Training

a set of m
odels

/

5.2
Evaluating the m

odel
a set of m

etrics
/

5.3
Im

proving the m
odel

A set of finetuned m
odels

/

5.4
Testing the code

safe code
/

6
Final Dissertation

6.5
Dissertation W

riting
A dissertation report

08/05/24

Figure 4.1: Gantt Chart Outlining the time for each iteration and the due dates for
each milestone.

Design & Methodology 23

4.3 System Design

4.3.1 System Architecture

The training and testing pipeline will be built using Python, PyTorch v2.5.0, and

CUDA v12.6. The pipeline will consist of several components; these can be seen in

4.2. The system will consist of a set of model architectures, passed to a high-level

LanguageModel, where they will be trained on data from the CodeDataset. Finally,

the outputs will be passed into an Evaluator, which will compute a set of metrics to

gauge the performance of each model.

Figure 4.2: High-Level Class Diagram of the Implementation, of single unit archi-
tectures for testing, and the class that rely on them. Also highlighting the libraries
each class depends on.

Entities marked in green are the main components that run in the programme. The

software will be structured like this for easy running of experiments because the

LanguageModel will be a universal component that can hot-swap and train different

architectures.

Design & Methodology 24

4.4 Model Selection

This research will train five different RNN-based architectures: standard RNN, LSTM,

GRU, MinGRU, and MinLSTM. These were picked to test how different architectures

perform.

4.4.1 RNN

This research will use an RNN as a baseline to compare how architectural changes af-

fect the emulation of Lua. RNN models are the simplest recurrent neural architecture

and have shown varying levels of success. Priya et al. (2017) used a character-level

RNN for code generation, which was error-prone; more success was achieved using

word-level RNN models (Graves et al., 2014; Zaremba, Mikolov et al., 2016), where

a "word" is a programming language token such as "IF".

The advantages of an RNN approach include its low computational requirements

compared to larger model architectures, simplicity of implementation, and the abil-

ity to handle variable-length sequences like programs. Additionally, RNNs maintain

an internal state, which could allow them to capture longer-term patterns and de-

pendencies in code, making them suitable for Lua emulation.

However, RNNs can suffer from vanishing gradients, making them inefficient for

modelling programs, since they may lose information about certain semantic elements

over time.

4.4.2 LSTM

LSTM networks are commonly used to model time-dependent data (Zhao et al.,

2023) because they can learn context over time and refer back to learned contexts.

As previously discussed, LSTM networks can be considered a forgetting and re-

membering program that stores data over time, or as the program continues. LSTM

models have shown success in a variety of studies, such as program completion (Rah-

man, Watanobe and Keita Nakamura, 2020), executing small programs (Zaremba

and Sutskever, 2014), and executing more complex programs (Reed and Freitas,

Design & Methodology 25

2015). This study will use an LSTM to model how a compiler can refer to a previous

scope or variable during compilation, and help model the emulation of Lua.

In addition to the gating mechanism, LSTM networks solve the issue of vanishing

gradients (Noh, 2021), making them ideal for learning input-output sequences. They

can, however, take a longer time to train than an RNN and may be more computa-

tionally intensive due to the complexity of gate computations.

4.4.3 GRU

A GRU will also be trained to compare how other architectures perform, such that

a better-performing LSTM would indicate the LSTM has an advantage over other

architectures. The GRU has seen success in learning simple algorithms, only falling

short at more complex ones (Zaremba, Mikolov et al., 2016). The cited study looked

at how these models perform in addition to a reinforcement learning technique known

as Q-Learning. Zaremba, Mikolov et al. (2016) showed that GRUs could maintain

the performance of the LSTM up until more complex examples; this makes the GRU

an ideal model to compare with the RNN and LSTM in emulating Lua.

The advantages of GRUs are similar to those of RNNs; they are computationally

more efficient than LSTM models because they require fewer parameters while main-

taining comparable performance. This results in faster training times and reduced

memory requirements. Compared to LSTMs, they are also simpler to implement as

they require fewer gates.

However, GRUs can also present some limitations; their simplified gating mechanism

may restrict their capacity to remember information over very long sequences, thus

limiting the effectiveness in modelling complex programs. Although GRUs has a

simpler architecture than LSTM, these models may be too simple to learn complex

programming language patterns.

4.4.4 MinLSTM and MinGRU

Additionally, two more recent architectures will be trained: the MinLSTM and Min-

GRU (Feng, Tung, Ahmed et al., 2024); these simpler RNN models can be trained in

Design & Methodology 26

parallel and perform as well as a transformer model. Studies involving the MinLSTM

and MinGRU have succeeded in language modelling, but remain untested for code-

related tasks.

4.4.5 Mixture of Experts

MoE has significantly improved the inference of LLMs such as Deepseek R1 (DeepSeek-

AI, 2025). This research will implement a similar notion of experts to determine

whether such specialised neurons improve the code understanding of the model. A

MoE approach has shown success in speech recognition using LSTMs, outperforming

other models without using experts (Chazan, Goldberger and Gannot, 2017).

MoE in emulation could benefit the model in learning separate parts of Lua syntax

and being able to route between the correct syntactic features. Conversely, introdu-

cing too many experts could increase the model’s sparsity and cause the model to

overfit the data.

4.4.6 Attention

Attention is used in Large Language Models, to decide which tokens the model

should put more importance on. Vaswani et al. (2017) introduced attention for

the transformer architecture, where it was termed scaled dot product multi-head

attention. Equation 4.1 computes self-attention from queries (Q), keys (K), and

values (V) - a set of scores representing the similarity of each token with all other

tokens.

Attention(Q, K, V) = SoftMax

(
QKT

√
dk

)
V (4.1)

Feng, Tung, Hajimirsadeghi et al. (2024) has shown that attention is useful in RNNs

to allow them to learn more complex patterns by letting the network focus on specific

parts of the input. So, this study will train models using self-attention to improve

the inference of each RNN architecture.

Design & Methodology 27

4.4.7 Hyperparameter Tuning

Models will be tuned using Optuna to find a configuration which reaches the most

optimal minimum. The objective function optimises the learning rate, the number

of iterations, number of hidden layers, and the number of input layers.

4.5 Dataset

Programs used to train the models will be written in the Lua programming lan-

guage. Lua was chosen because it is a very small language built to be embedded

into any application (Ierusalimschy and Figueiredo, 2009). Simpler programs reduce

the amount of syntactic noise the compiler, or in this case, reducing the amount the

model, needs to learn, allowing it to focus on semantics over syntax.

The dataset of Lua code snippets will be synthetically created using programmatic

and Generative model-based data augmentation. Generative models such as Chat-

GPT from Openai and Claude from Anthropic often hallucinate code outputs; all

code will be passed through a Lua compiler to ensure it correctly compiles and gives

an output.

4.5.1 Curriculum Learning

Curriculum learning is a technique in which models are trained on data presented

in a meaningful order of increasing difficulty, similar to how our education system

is structured. Bengio et al. (2009) first formalised this technique and proved that

curriculum learning has a benefit in vision and language tasks. Reed and Freitas

(2015) and Zaremba, Mikolov et al. (2016) were able to show that curriculum learning

improved model accuracy, bringing it in the 90%+ range.

This research will use a curriculum of Lua programs in three categories: easy pro-

grams - those with minimal branching (1-2); medium programs - those with more

complex branching (3-4) and structures; and hard programs - ones with multiple

branches (5+) and state changes.

Design & Methodology 28

4.5.2 Lua Semantics

Current research fails to train models that understand the semantic meaning of

code (Rahman, Watanobe and Keita Nakamura, 2020). This research will use S-

expressions generated from the Lua program’s Abstract Syntax Tree (AST) repres-

entation. The tree-sitter library will generate the AST and S-Expression.

S-expressions, or symbolic expressions (often abbreviated sexp, sexpr), are a way to

represent "tree-like" structures in an expression format. They were first used in the

Lisp programming language to represent source code.

To illustrate, a simple print statement, presented in Figure 4.3, is parsed into the S

expression in Figure 4.4.

print (" He l lo ␣Sheep ! ")

Figure 4.3: Simple Lua program to print a message.

(chunk
; c a l l p r i n t () wi th arguments
(f unc t i on_ca l l name : (i d e n t i f i e r)

arguments : (
arguments (

string content : (s t r ing_content)
)

)
)

)

Figure 4.4: The equivalent S-Expression for the print statement in 4.3.

S-Expressions help the model learn Lua semantics because user-specific names are

stripped out into an ‘identifier‘ token, reducing the noise in the input. This should

help the model understand that a print(”hello”) and func(”world”) are semantically

both function calls. The S-Expression will be further parsed to generate semantic

tokens such as "STRING(hello)" to provide a more meaningful, but less noisy output.

Design & Methodology 29

4.6 Benchmarking

4.6.1 Evaluation Metrics

This research will use metrics representing different aspects of the model for Lua

program outputs. To determine how well overall the model is doing across all test

cases, Pass@k (Chen et al., 2021) - shown in equation 4.2 - will be used to measure

the number of correctly predicted outputs.

pass@k := Eproblems

[
1 − C(n − c, k)

C(n, k)

]
(4.2)

Where C(n−c, k) computes the number of ways to choose k incorrect samples(n−k),

it reflects a scenario where all k samples are incorrect. C(n−c,k)
C(n,k) gives the probability

that all samples are incorrect.

Individual examples will be evaluated using Sentence Similarity, which is implemen-

ted as a cosine similarity. This will allow the evaluator to measure how close the

model got to the correct output. The computation is shown in equation 4.3, involving

a dot product of the two vectors divided by the product of their magnitudes.

cos(θ) = A · B

||A|| ||B||
(4.3)

Perplexity measures how well the model predicts a sample and captures the uncer-

tainty level in its output. It gives an overview of how well the model thinks it is doing

and thus shows whether it is learning the correct patterns. Perplexity is computed

as the inverse probability of the corpus according to the Language model, normalised

over the number of words (1
T
); the calculation is shown in equation 4.4.

Perp =
T∏

t=1

(
1

PLM(x(t+1)|x(t), . . . , x(1))

) 1
T

(4.4)

Design & Methodology 30

Cross-entropy will be used to train the network to optimise the loss function. Cross-

entropy measures the difference between probability distributions of a given variable

or set of events. The computation is shown in equation 4.5 - P is the true distribution

of the data, and Q is the predicted distribution - it directly measures the distribution

of the generated output against the correct probability distribution.

H(P, Q) = −
∑

x

P (x) log Q(x) (4.5)

Predicting code output can also be considered a question-answering (QA) system,

where the user asks a question in terms of a Lua program and wants an answer,

which consists of the program output. As such, it can be evaluated in terms of a

QA system through computing an F1 score (shown in Equation 4.8), which gives

information about the token gap between the expected and predicted outputs.

Precision = Number of Words Predicted + GT Words
Total Words Predicted (4.6)

Recall = Number of Words Predicted + GT Words
Total Words in GT (4.7)

F1 = 2 · Precision × Recall

Precision + Recall
(4.8)

Finally, an Exact Match (EM) will be computed to give an overview of perfect pre-

dictions; the metric allocates a value of 1 to an output that exactly matches the

expected output and a 0 for outputs that do not match. This is shown mathemat-

ically in Figure 4.9. EM gives an overview of how many examples were predicted

correctly compared to those not.

Design & Methodology 31

EM =


1, if pred = expected

0, otherwise
(4.9)

Using various methods gives an overview of how well the models perform in differ-

ent dimensions - Pass@K and Cross-entropy Loss evaluate the system across the

whole dataset. EM, Perplexity, and Sentence Similarity evaluate the performance

per sample.

4.6.2 Baseline Models

As a baseline, this research will compare all trained models against the standard

RNN to determine how the performance compares against the LSTM, GRU and

Minimal versions—additionally, using LLMs specifically, StarCoder 2, and Qwen 2.5

Coder to generate outputs, which will be passed into a similar evaluation component

in order to compute relevant comparative metrics.

4.7 Overview of Experiments

Table 4.1 provides an overview of different model configurations that this study will

test. The first row shows the base configuration, which remains unchanged unless

modified on a specific row. This research varies the architecture and number of

experts to determine whether architecture has an effect on the ability of the RNN

architecture to emulate Lua programs, and compute the set of metrics described

previously.

4.8 Ethical Considerations

Large Language Models such as ChatGPT are trained using RLHF (Reinforcement

Learning with Human Feedback) and are computationally expensive. It should be

considered that using such tools for generating data and data augmentation comes

with a large environmental cost.

Design & Methodology 32

Table 4.1: Architectural Variations on models tested. Values were updated from the
base model. Hidden state size (h), number of experts (expts), and training steps. The
model was evaluated on a Exact Match (EM), F1 Score (F1), Sentence Similarity
(SS), Pass@1 (P@1), Perplexity (Perp), Recall (Rcl) and Precision (Prs).

h expts train EM F1 SS P@1 Perp Rcl Prs
base 900 0 3000

RNN 2
4
10

GRU

Table serves as an overview of experiments
2 Full Results Presented and Explained
4 in Chapter 6
10

LSTM 2
4
10

Mini
GRU

2
4
10

Mini
LSTM

2
4
10

The carbon footprint associated with running these models is exponentially large.

Strubell, Ganesh and McCallum (2019) suggests that training a large transformer

could emit just as much CO2 as five cars throughout their entire usage period.

Additionally, it is estimated that thousands of gallons of water are used to cool data

centres when training large models (Luccioni, Viguier and Ligozat, 2022).

4.9 Risk Management

This research does not involve any human participants. Therefore, all risks involved

are specific to the software implementation. One such risk involves the models failing

to learn with a feasible amount of data.

Design & Methodology 33

Chapter 5

Implementation

5.1 Development Environment and Tools

The artefact was developed using Visual Studio Code and a Python virtual envir-

onment to track dependencies and isolate it from the system environment, doing so

provides unified versions for each package, and avoids version conflicts.

5.2 Language Parsing

5.2.1 Building Data

The first requirement of the system is to read a dataset and be able to generate

the outputs of each snippet of code. The dataset was generated by prompting (the

prompt is illustrated in Figure 5.3) ChatGPT, and is available online 1. This was

done using the Python Threading and concurrent.futures library to read each Lua

file in parallel and save the program, with its output in a separate .luax file which

stores the Lua examples. A training example input is separated from the output

using a <PROGRAM END> token, an example of a single simple program is shown

in Figure 5.4, along with a more complex example in Figure 5.5. Since all Lua files

were independent, it is trivial to process each path in a directory on separate threads

using a ThreadPoolExecutor 2.
1https://github.com/MeRichard123/ml-compiler/tree/main/training_examples
2https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/build_data.py

34

https://github.com/MeRichard123/ml- compiler/tree/main/training_examples
https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/build_data.py

«interface»
nn.Module

LanguageModel

+ model: nn.Module

+ learning_rate: float
+ criterion: nn.Module

+ loss: Tensor
+ optimizer: Optimizer
+ dropout: nn.Dropout
+ max_sample_len: int
+ device: string
+ embedding: Embedding

+ init_model(str, List[str]): void
+ tokenise(str): List[str]
- train(Tensor, Tensor): Tensor, float
- validate(Tensor, Tensor): Tensor
+ train_loop(void): void
+ sample(str, float): str
+ samplek(str, float): str
+ save_model(str): void

+ load_model(str): nn.Module

GRU

+ embedding_dim: int
+ hidden_size: int
+ device: str
+ dropout: nn.Dropout
+ output_size: int
+ softmax: nn.LogSoftmax
+ moe: MoeLayer
+ fc: nn.Linear

+ gru: nn.GRU

+ forward(Tensor, Tensor)
+ initHidden(void)

RNN

+ embedding_dim: int
+ hidden_size: int
+ device: str
+ softmax: nn.LogSoftmax
+ moe: MoeLayer
+ dropout: nn.Dropout
+ o2o: nn.Linear
+ i2o: nn.Linear
+ i2h: nn.Linear

+ forward(Tensor, Tensor)
+ initHidden(void)

LSTM

+ embedding_dim: int
+ hidden_size: int
+ num_layers: int
+ moe: MoeLayer
+ device: str
+ dropout: nn.Dropout
+ output_size: int
+ lstm: nn.LSTM
+ fc: nn.Linear
+ softmax: nn.LogSoftmax

+ forward(Tensor, Tensor)
+ initHidden(void)

minGRU

+ embedding_dim: int
+ batch_size: int

+ hidden_size: int

+ device: str
+ output_size: int
+ moe: MoeLayer
+ softmax: nn.LogSoftmax
+ fc: nn.Linear
+ linear_z: nn.Linear
+ linear_h: nn.Linear
+ dropout: nn.Dropout

+ forward(Tensor, Tensor)

+ initHidden(void): Tensor

minLSTM

+ embedding_dim: int
+ batch_size: int

+ hidden_size: int

+ device: str
+ output_size: int
+ moe: MoeLayer
+ softmax: nn.LogSoftmax
+ fc: nn.Linear
+ linear_f: nn.Linear
+ linear_i: nn.Linear
+ linear_h: nn.Linear
+ dropout: nn.Dropout

+ forward(Tensor, Tensor)

+ initHidden(void)

LabelSmoothingLoss

+ smoothing: float

+ vocab_size: int

+ forward(Tensor, Tensor)

Figure 5.1: UML of Model Architectures and Parent Language Model, modelling the
interactions between different classes.

Implementation 35

Tokeniser

+ parser: type

+ generate_ast(str): Node

+ tokenise_code(str): List, List, List

+ traverse_output(str): List

+ traverse_ast(Node): List

+ process_function_call(Node): str

- extract_field_expression(Node): str

CodeDataset

+ data_dir: str

+ tokeniser: Tokeniser

+ data: Tokeniser

+ vocab: Obj

+ word2idx: Obj

+ build_vocab(str)

+ train_test_split(test_size, val_size)

+ lpocv_split(int): List

+ load_data(): Obj

Evaluator

+ test: CodeDataset

+ lm: LanguageModel

+ k: int

+ word2idx: Obj

+ pad_vectors(Tensor, Tensor)

+ get_vector(test_size, val_size)

+ evaluate(float, bool)

+ sentence_similarity(Tensor, Tensor)

+ exact_match(Tensor, Tensor)

+ pass_at_k_single(Tensor, Tensor)

+ pass_at_k_multiple(Tensor, Tensor)

+ precision(str, str)

+ recall(str, str)

+ f1(str, str)

Figure 5.2: UML of the Tokenisation, Data and Evaluation part of the pipeline.

" Create 100 s imple examples o f Lua which only use
<language construct> statements , and demonstrate the
semant ics o f <language f ea ture> in Lua , ensur ing only a
s i n g l e output and task per sample . "

Figure 5.3: Prompt template used to generate Lua code examples, where <> indicate
semantic features such as selection and looping.

message = " He l lo ␣World "
print (string.upper (message))
<PROGRAM END>
HELLO WORLD

Figure 5.4: Simple Program input-output example, of a string function running
inside a print statement.

Implementation 36

function getMinMax(numbers)
local min = numbers [1]
local max = numbers [1]

for i = 2 , #numbers do
i f numbers [i] < min then

min = numbers [i]
end
i f numbers [i] > max then

max = numbers [i]
end

end

return min , max
end

local va lues = {7 , 2 , 9 , 4 , 5}
local minimum , maximum = getMinMax(va lue s)

print (" In ␣ the ␣ g iven ␣ set , ␣ the ␣minimum␣ i s ␣ " \
. . minimum . . " ␣and␣ the ␣maximum␣ i s ␣ " \
. . maximum)

<PROGRAM END>
In the g iven set , the minimum i s 2 and the maximum i s 9

Figure 5.5: Complex Program input-output example, to find the smallest and highest
numbers of an array.

Implementation 37

5.2.2 Semantic Tokenisation

Language models work with tokens created from a corpus of text using a tokeniser.

This study uses tree_sitter to parse the AST, and generate a clean set of tokens

free of syntax sugar. Treesitter first parses the code to generate an AST and then

appends prompt-specific tokens such as <PROGRAM END>3. AST-specific tokens

get converted into cleaner Semantic Tokens consisting of the token type and its data.

The tokeniser is shown in Figure 5.2, consisting of AST generation and traversal,

along with tokenisers for the input and output sections of the prompt. Tokenised

output examples for the simple and complex Lua programs are illustrated in Figures

5.6 and 5.7

IDENTIFIER(message) EQUALS STRING(He l lo)
STRING(World)

FUNCTION_CALL(pr in t) FUNCTION_CALL(s t r i n g . upper)
ARGUMENTS(IDENTIFIER(s t r))
<PROGRAM END>
STRING(He l lo) STRING(World)

Figure 5.6: Semantic Tokens for Figure 5.4

5.3 Dataset

The dataset was implemented using the PyTorch IterableDataset class; this was used

over Dataset because it allows for a larger amount of data to be efficiently iterated by

creating a Python Generator object. The class (visualised in Figure 5.2) encapsulates

data processing into a PyTorch compatible dataset, which provides the added benefits

of batch-processing for more efficient data manipulation. Batch processing works by

splitting data into groups and handling them as larger groups rather than passing

individual samples through the model.

Additionally, the implemented object handles switching between the next curriculum

during training via curriculum learning. This is done via an instance variable, which

updates the current dataset with the next curriculum data.
3https://github.com/MeRichard123/ml-compiler/blob/main/src/Parser.py

Implementation 38

https://github.com/MeRichard123/ml-compiler/blob/main/src/Parser.py

FUNCTION IDENTIFIER(getMinMax) IDENTIFIER(numbers)
LOCAL IDENTIFIER(min) EQUALS

IDENTIFIER(numbers) NUMBER(1)
LOCAL IDENTIFIER(max) EQUALS

IDENTIFIER(numbers) NUMBER(1)
FOR IDENTIFIER(i) EQUALS NUMBER(2) COMMA

IDENTIFIER(numbers) DO
IF IDENTIFIER(numbers) IDENTIFIER(i) LESS_THAN

IDENTIFIER(min) THEN
IDENTIFIER(min) EQUALS IDENTIFIER(numbers)

IDENTIFIER(i)
END
IF IDENTIFIER(numbers) IDENTIFIER(i)

GREATER_THAN IDENTIFIER(max) THEN
IDENTIFIER(max) EQUALS IDENTIFIER(numbers)

IDENTIFIER(i)
END

END
RETURN IDENTIFIER(min) COMMA IDENTIFIER(max)

END
LOCAL IDENTIFIER(va lues) EQUALS NUMBER(7) COMMA

NUMBER(2) COMMA NUMBER(9) COMMA NUMBER(4)
COMMA NUMBER(5)

LOCAL IDENTIFIER(minimum) COMMA IDENTIFIER(maximum)
EQUALS FUNCTION_CALL(getMinMax) IDENTIFIER(va lue s)

FUNCTION_CALL(pr in t)
STRING(In the g iven set , the minimum i s) COMMA

STRING(and the maximum i s)
<PROGRAM END>
STRING(In) STRING(the) STRING(given) STRING(s e t)
STRING(the) STRING(minimum) STRING(i s) NUMBER(2)
STRING(and) STRING(the) STRING(maximum) STRING(i s)
NUMBER(9)

Figure 5.7: Semantic Tokens for Figure 5.5

5.3.1 Data Splitting

In training Deep Learning models, it is common to split the data into three datasets.

The training set, which consists of 70% of the data, is what the models use during

training to learn patterns. The validation set, which consists of 15% of the data, is

used during training to measure the level of overfitting. Validation gives an overview

Implementation 39

of how well the models perform on unseen data as training progresses. The last 15%

is also unseen and used for testing and is used to compute evaluation metrics, and

shows how well the model performs on unseen data after training. The datasplits are

visualised in the Pie Chart shown in Figure 5.8, where the total number of samples

is 677. The function 4 returns three subsets of the dataset, which gives the class the

ability to fetch a list of prompts to use during evaluation.

Training

69.8%
 (473)

Testing

15.1%
 (102)

Validation

15.1%
 (102)

Figure 5.8: Chart visualising the data splits and the number of samples per split,
using a 70-15-15 split and 677 data samples.

Additionally, this study implements Leave-p-out Cross-Validation 5; which is a tech-

nique used for model evaluation that uses a sliding window of test and train samples.

Such a method helps assess the performance and generalisation of a model because

it leads to a broader range of data being used for training and testing, reducing

the model’s bias towards specific data samples. Another way this is achieved is by

shuffling the data during splits, which randomises the samples in each data split.
4https://github.com/MeRichard123/ml-compiler/blob/main/src/Data.py#L153
5https://github.com/MeRichard123/ml-compiler/blob/main/src/Data.py#L185

Implementation 40

https://github.com/MeRichard123/ml-compiler/blob/main/src/Data.py#L153
https://github.com/MeRichard123/ml-compiler/blob/main/src/Data.py#L185

5.3.2 Building the Vocabulary

The dataset generates the vocabulary (V), which the models use to compute prob-

abilities and sample from. This is implemented via the build_data 6 method (Figure

5.2), and works by first tokenising each sample and then creating a two-way map-

ping between the token and the token index. The method returns both idx2word

and word2idx mappings along with V and |V |.

5.4 Training Pipeline

Training and inference occur in the LanguageModel, a universal language model

training container. It allows for hot swapping of the model architecture by passing

in the model as an instance variable; therefore, keeping the same training process

per model eliminates bias for specific models, which differ in training. A universal

training container gives way to running experiments via swapping only the model

architecture.

5.4.1 Language Model

The LanguageModel class can be seen with its parameters in Figure 5.1. The model

is first initialised 7, which builds the vocabulary. This method also initialises the loss

function by passing in the vocabulary size, needed for computing label smoothing

confidence (see section 5.7).

Training

Model training begins in the train_loop function, which uses the TQDM library

to display training progress and runs for 3000 epochs. Each epoch loops over data

batches and splits the batch into input and output tokens to be passed through the

train function, additionally iterating over the validation set and calling validate to

compute the validation loss.
6https://github.com/MeRichard123/ml-compiler/blob/main/src/Data.py#L94
7https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L39

Implementation 41

https://github.com/MeRichard123/ml-compiler/blob/main/src/Data.py#L94
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L39

Training the model takes place in the train method, which converts the input into

an embedding and passes it to the model to initialise the hidden state of the seq2seq

model. The model is trained by computing the loss between the target and model

output tensors. The same approach is used to calculate the validation loss on the

dataset.

Sampling

The process of sampling from the model involves predicting a given input; the model

makes an inference about some unseen data. This procedure 8 requires appropriate

prompt formatting by appending the <PROGRAM END> token. Like training,

the input is processed by passing it through the model, updating the hidden states.

The core of model sampling is the generation loop, which uses a greedy decoding

approach to sample the probability distribution and pick the top-most likely token.

Greedy Decoding was selected over Top K and Nucleus Sampling because, unlike

natural language, programming languages tend to lack output variance, and the

model should only be concerned with the most likely next token.

Finally, the output is updated to the next token by updating hidden states based

on the current output. Each output is concatenated on each generation step and

returned as the final model generation output.

Check-pointing

An integral part of the testing pipeline was being able to save and load 9 the model

states. This was useful because it permitted keeping trained models in checkpoints

to be loaded for inference, saving the time needed to retrain them. Check-pointing

was implemented via the save and load model methods, which fetch and update all

the model properties to match the checkpoint.
8https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#

L281
9https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#

L400

Implementation 42

https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L281
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L281
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L400
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L400

5.4.2 Language Model Hyperparameter Tuning

Deep learning models often consist of many parameters which affect training, but are

not direct parameters of the model. This study uses the Optuna, framework to tune

and find the most optimal values of the model learning rate, number of iterations,

and number of layers of the model. In Optuna this process is implemented 10 by

first creating an objective function which runs the model training and defines the

parameters to test, once that is in place, a tuning function is used to create an

Optuna Study which repeatedly runs the objective with the set of trail parameter

until the parameters which minimise the objective function the most are found.

5.5 Model Implementation

For consistency, all models were implemented with the same interface; using the

PyTorch module base class, they implemented an initialisation method and some

pseudo-methods for returning the same model for logging.

Each input vector is represented in three dimensions: (N, L, Hin/out), where N is

the batch size, L is the sequence length and Hin/out represents the input or output

size. Various checks are implemented to ensure the dimensions match the expected

dimensionality and that the correct dimensions are squeezed and unsqueezed where

needed.

5.5.1 RNN

The standard RNN subclass is implemented using three linear neural networks 11

from the PyTorch nn class. The first converts the input into hidden states, then the

hidden state gets converted to the output, and finally, the hidden state output gets

converted to a network output.

Its forward method processes each part of the input sequence individually, combining
10https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModelOptuna.

py#L20
11https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/RNN.

py#L20

Implementation 43

https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModelOptuna.py#L20
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModelOptuna.py#L20
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/RNN.py#L20
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/RNN.py#L20

the hidden and input states to pass the vectors through the network layers. The

output is then concatenated using torch.stack along the sequence dimension.

5.5.2 LSTM and GRU

LSTM and GRU models are implemented using a similar approach to the RNN;

however, they use the nn.LSTM 12 and nn.GRU 13 layers rather than using recurrent

linear layers.

Individual models are parameterised by first the embedding dimension, which spe-

cifies the dimensionality of the embedding vectors (equal to |V |), and the batch size,

referring to the number of samples processed in one batch. The model is also charac-

terised by the size of hidden and output states, which indicate the number of neural

network layers.

All models are also optionally configured to accept the Mixture of Experts config-

uration and to toggle the attention mechanism, which trains the model with and

without attention and MoE for experiment purposes.

5.5.3 MinGRU and MinLSTM

Minimal GRU 14 and LSTM 15 models are implemented directly as described in

(Section 2.1.1), as three linear layers, the softplus function, and a range of utility

functions defined in the Utils module.

The Utils module first implements the log_g function 16 for converting the input

vectors into log space. Feng, Tung, Ahmed et al. (2024) showed that log space

computation improved numerical stability compared to the standard version.

The parallel prefix scan is also implemented via cumsum - computing the partial sums
12https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/LSTM.

py#L18
13https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/GRU.

py#L25
14https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/

minGRU.py#L9
15https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/

minLSTM.py#L9
16https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/scan.py#L5

Implementation 44

https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/LSTM.py#L18
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/LSTM.py#L18
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/GRU.py#L25
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/GRU.py#L25
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/minGRU.py#L9
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/minGRU.py#L9
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/minLSTM.py#L9
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/minLSTM.py#L9
https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/scan.py#L5

during up-sweep and logcumsumexp propagating the values down the tree 17, in the

down-sweep step based on the Feng, Tung, Ahmed et al. (2024) implementation.

5.5.4 Mixture of Experts

Mixture of Experts (MoE) is implemented as a Utility layer 18 which runs optionally

for each model when an appropriate configuration is provided. MoE is configured

by providing the number of experts the network should use. This study implements

dense MoE as described by Jacobs et al. (1991); in dense MoE all experts are activ-

ated for each input, conversely, sparse MoE activates only a subset of experts per

input. Dense mixtures of experts reduce information loss caused by sparse experts;

this benefits small models such as RNNs by removing the overhead of the sparse

routing mechanism.

Adaptive Mixtures of Experts is implemented through a set of m linear layers, where

m is the number of experts, alongside a gating router for selecting the correct ex-

pert. The computation begins by calculating the gate logits and deriving expert

probabilities via the softmax function. The layer then computes the output for all

experts, scaled by the probability distribution of using the experts. Finally, these

weighted expert outputs are combined through a sum to compute the final output;

the execution flow is shown in Figure 5.9.

5.5.5 Attention

An additional layer part of Utils implements the attention mechanism by directly

using the formula from Section 4.4.6 19. The AttentionLayer first computes keys,

values, and queries through a nn.Linear and transposing each matrix into the correct

shape. The calculation is shown in code snippet 5.10.
17https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/scan.py#L27
18https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/Moe.py#L4
19https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/Attention.py#

L21

Implementation 45

https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/scan.py#L27
https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/Moe.py#L4
https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/Attention.py#L21
https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/Attention.py#L21

Input

Output

Expert 1 Expert 2 Expert n

Gating Network

Scale Outputs

Sum

SoftMax
...

Stack

+

Figure 5.9: Computation Graph illustrating the execution flow of the Mixture of
Experts Layer; the input is passed through a gating network and experts separately,
and then combined using a product and sum.

Ca l cu l a t e a t t e n t i o n
energy = que r i e s @ keys . t ranspose (−2 , −1)
sq r t = s e l f . head_dim∗∗(1/2)
a t t en t i on = torch . softmax (energy / sqrt , dim=−1)
out = at t en t i on @ va lues

Figure 5.10: Attention Computation, of the energy or compatibility score of QKT ,
the sqrt

√
dk, its SoftMax and finally scaling by values V

5.6 Evaluation

The models were evaluated after training via an Evaluator class 20 which uses the

dataset get_prompts function to fetch all prompts from the test set. These are split

into the input and expected output based on the position of the <PROGRAM END>

token.

The class implements utilities to get the vector, which converts the input tokens using

an index look-up in the word2idx dictionary, and casts to a tensor. Additionally, the
20https://github.com/MeRichard123/ml-compiler/blob/main/src/Evaluation.py#L17

Implementation 46

https://github.com/MeRichard123/ml-compiler/blob/main/src/Evaluation.py#L17

vectors are padded so that the sizes match, making it possible to compute each

metric.

Sample input is passed through the model to generate the model outputs to be

compared against the ground truth. Comparisons are done by a set of functions which

compute the metrics proposed in section 4.6.1. Cosine similarity is implemented

through the PyTorch interface using nn.functional.cosine_similarity. The Exact

Match procedure is implemented in Figure 5.11 by checking if every element matches

that of the corresponding vector component.

def exact_match (s e l f , vec1 , vec2) :
i f vec1 . s i z e (1) != vec2 . s i z e (1) :

return 0
return int (torch . a l l (vec1 == vec2) . item ())

Figure 5.11: Python PyTorch Implementation of EM

Precision and recall are implemented using the set intersection operator 21 to find the

overlap between the ground truth and predicted tokens and then compare against the

length of the generated and expected tokens, respectively. As discussed in Section

4.6.1, F1 can be implemented in terms of precision and recall.

5.6.1 Sample K

The Pass@K metric is implemented through a separate samplek 22 method on the

Language Model. This resamples the model num_samples times to generate a range

of candidate outputs, which are used to determine whether at least one (for pass@1)

candidate matches the correct output.

Pass@K is implemented in two functions in the evaluator, the first Pass@K_Single ∈

(0, 1), which computes the values for one sample, returning one in the case of a match,

and 0 in the case of a miss.

The final pass@k computation is done by looping through each sample in the test
21https://github.com/MeRichard123/ml-compiler/blob/main/src/Evaluation.py#L168
22https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#

L273

Implementation 47

https://github.com/MeRichard123/ml-compiler/blob/main/src/Evaluation.py#L168
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L273
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L273

set and accumulating the single Pass@K for 10 candidates per sample. Pass@K is

finally calculated by averaging over the total number of samples.

5.7 Challenges

5.7.1 Overfitting

A major implementation challenge was data quality and leaning the model towards

generalisation rather than over-fitting. This research implemented several forms of

regularisation to help the model better generalise the dataset.

Label Smoothing

The first approach towards reducing over-fitting was altering the loss function to

soften "hard" labels - labels in which the model was overconfident, which makes the

model less certain and aims to improve generalisation. By reducing the probability of

errors from true labels, the model becomes more robust in dealing with noise. Such a

loss function is implemented using a smoothing value of 0.2 to compute the confidence

and scale the probabilities. Finally, the loss function 23 computes Kullback-Lieber

Divergence Loss DKL(P ||Q), which measures how much a probability distribution Q

deviates from a true probability P ; such a metric is useful for unknown probability

distributions.

L2 Regularisation

Another approach which improved generalisation was weight decay, often known as

L2 regularisation. Weight decay reduces high weights to encourage smaller weights

to have a larger effect on the output, discouraging reliance on one particular feature.

This work uses a weight decay factor of 1e − 3 and the ADAM optimiser, which is

implemented in the language model 24.
23https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L22
24https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L30

Implementation 48

https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L22
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L30

Dropout

Dropout drops a fraction of neurons in the work to prevent the model from becoming

too reliant on any given Neuron, aiding in model generalisation because it prevents

co-adaptation of neurons, forcing them to work independently and so prevents the

model from overfitting. In this study, models use a dropout ratio of 0.5, dropping

half the neurons on each timestep 25 of the model.

Teacher Forcing

Teacher forcing (or student forcing) keeps the model close to the ground truth by

feeding the ground truth vectors at the end time step instead of the previous output

vector 26. This technique is often valuable for training RNNs (Kolen and Kremer,

2001) and has been shown to help them learn, because mistakes are not propagated

through the model.

Learning Rate Scheduling

Another method which helps the model learn is learning rate scheduling, which can

alter the learning rate during training to ensure the model is not learning too slowly

or too quickly. This approach increases learning stability and helps the model avoid

over-fitting. This study uses ReduceLROnPlateau 27, which reduces the learning rate

by a factor of 0.5 if the loss remains unchanged for more than 10 iterations (patience

10).

5.7.2 Data Quality

Although Lua is a simple language with a lot of online code, most available Lua code

consists of large amounts of embedded software, large production applications, and

configurations. These code bases do not serve well for input and output examples,

so Chatgpt generated a set of examples for training to counteract this.
25https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/

minGRU.py#L62
26https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L93
27https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#

L144

Implementation 49

https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/minGRU.py#L62
https://github.com/MeRichard123/ml-compiler/blob/main/src/Architectures/minGRU.py#L62
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L93
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L144
https://github.com/MeRichard123/ml-compiler/blob/main/src/LanguageModel.py#L144

The downside of this approach is that the range of data that ChatGPT can generate

is very sparse, and takes a lot of prompting to generate a reasonably sized dataset,

to do attempt to counteract this, a data augmentation system 28 is set up to change

each program slightly and provide more variety in examples.

28https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/
DataAugumentation.py

Implementation 50

https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/DataAugumentation.py
https://github.com/MeRichard123/ml-compiler/blob/main/src/Utils/DataAugumentation.py

Chapter 6

Results & Discussion

6.1 Computational Performance and Resources

Each model was trained for 3000 iterations, a batch size of 128, which are values

found from hyperparameter tuning with optuna and |V | = 951 on a GPU. They all

used an ADAM (Adaptive Moment Estimation) optimiser and the same number of

parameters and identical loss functions. The training times are indicated in Table 6.1,

showing that training time increases with the number of experts, due to the added

complexity of the MoE layer. RNN training times are relatively short compared to

large language models, which often take days or weeks to train (Kaplan et al., 2020).

Table 6.1: Training times in minutes for each model by number of experts, and the
time per iteration

model train time per n experts time per iteration per n experts
0 2 4 10 0 2 4 10

LSTM 55 63 73 96 0.0183 0.0213 0.0257 0.0323
GRU 47 58 63 90 0.0175 0.0193 0.0213 0.0303
RNN 48 53 61 82 0.0175 0.0177 0.0205 0.0275
MinGRU 79 83 85 111 0.0265 0.0278 0.0287 0.0372
MinLSTM 71 86 90 114 0.0237 0.0288 0.0302 0.0380

Table 6.2 summarises the timing of each step of the training pipeline, the test in-

dicates no severe bottleneck in the execution, and the model achieves efficient times

compared to larger models.

51

Table 6.2: Timings in Seconds for each step of the training pipeline

Step Time
Tokenising 0.100
Training 1800
Sampling 0.207
Evaluation 6.034

6.2 Results

Results for carried out experiments are presented in Table 6.3; the following sections

will describe the patterns within the results and visualise the outcomes.

6.2.1 RNN Performance

The standard RNN model achieved the worst overall performance, with a consistent

value of 0.00 for Exact Match and Pass@1, indicating it failed to predict any test

programs perfectly. The RNN also scored the highest in validation perplexity among

tested architectures. F1 score indicated a low fraction of samples where the number

of tokens matched the expected amount. The model also predicted some vector

outputs that matched the expected output, since the cosine similarity is > 0.

(a) No Mixtures of Experts (b) 2 Expert Networks

Figure 6.1: Vanilla RNN shows reduced loss using 2 experts rather than none, how-
ever, both models overfit the data.

Figure 6.1 shows the loss plots during training and validation for the RNN model,

which demonstrates that Mixture of Experts consistently produced a lower loss; it

Results & Discussion 52

should be noted that validation loss remained consistently higher than training loss.

These results do not support vanilla RNNs in successfully emulating Lua programs.

Notably, the lack of improvement over different configurations was consistent across

all standard RNN architectures. Additionally, the number of experts did not affect

the production of the correct number of tokens, with the F1 score remaining low

across each experiment.

6.2.2 GRU Performance

The GRU model performed similarly to the RNN model with similarly low results,

with no perfect predictions and a low number of correctly predicted outputs based

on the number of tokens outputted. The model showed slight improvement with

increasing number of experts; however, F1 only differed by ±0.001 and therefore

too low to be significant. Using four experts in this case achieved a higher F1 than

other values. The GRU demonstrated a significantly lower perplexity compared to

the vanilla RNN. The F1 score of 0.0093 does not follow the pattern of low values

for the model and may be considered an outlier.

(a) No Mixtures of Experts. (b) 2 Expert Networks.

Figure 6.2: GRU model training and validation loss plots.

Figure 6.2 visualises the training and validation loss for the GRU, where a similar

trend to the RNN arises. The plot indicates a lower loss in training and validation

than the RNN, showing only slight improvement with an increasing number of expert

networks.

Results & Discussion 53

6.2.3 LSTM Performance

The LSTM architecture indicated results proportionate to the GRU model, with

low values and no correct outputs regarding Pass@1 and EM. Like the RNN, the

LSTM model performed best with only two experts. This architecture also resulted

in higher perplexity than the GRU. Regarding F1, the LSTM slightly improved

over the GRU, predicting the correct number of words more frequently. Sentence

Similarity remained consistent across all three RNN architectures, with a mean of

0.455 and a standard deviation of 0.02.

(a) No Mixtures of Experts. (b) 2 Expert Networks.

Figure 6.3: LSTM model training and validation loss plots.

Loss plots in Figure 6.3 indicate a similar trend to the GRU, except the LSTM shows

a lower initial loss; however, the same trend of overfitting. The LSTM also presents

a lower loss than the GRU and standard RNN.

6.2.4 MinGRU Performance

Minimal GRU improves over previous RNN architectures, with higher F1, precision

and recall compared to GRUs, standard RNNs, and the LSTM, reaching 0.0391 with

two experts - this is an improvement by a factor 10×. This architecture performs best

with two expert networks, with 0.0115 for EM, showing that some examples were

correctly predicted; further backed up by a score of 1.1494 on pass@k, indicating at

least one predicted token was correct on test examples.

The MinGRU architecture achieved more consistent perplexity of around 3.36 (σ =

Results & Discussion 54

(a) No Mixtures of Experts. (b) 2 Expert Networks.

Figure 6.4: minGRU model training and validation loss plots.

0.18). Figure 6.4 shows an improved loss over other RNN architectures; however, it

overfits on the validation set.

6.2.5 MinLSTM Performance

The minLSTM showed similar performance to the minGRU model, also achieving

0.0115 on EM and 1.1494 on Pass@1, however, using four experts rather than two.

F1 scores improve over basic RNNs, but do not outperform the minGRU. Sentence

Similarity scores are similar to those of the minGRU with a mean of 0.668 (σ = 0.02).

LSTM perplexity is higher, indicating the model is less certain of its output than

the minGRU.

(a) No Mixtures of Experts. (b) 2 Expert Networks.

Figure 6.5: minLSTM model training and validation loss plots.

Results & Discussion 55

Table 6.3: Experiment Results per model such that hidden state size (h), number
of experts (expts), and training steps. The model was evaluated on a Exact Match
(EM), F1 Score (F1), Sentence Similarity (SS), Pass@1 (P@1), Validation Perplex-
ity (Perp), Recall (Rcl) and Precision (Prs).

h expts train EM F1 SS P@1 Perp Rcl Prs
base 900 0 3000

RNN

0.0000 0.0077 0.4414 0.0000 13.4979 0.0161 0.0053
2 0.0000 0.0051 0.4815 0.0000 9.1533 0.0094 0.0037
4 0.0000 0.0018 0.4411 0.0000 13.2032 0.0115 0.0010
10 0.0000 0.0044 0.4800 0.0000 6.0734 0.0077 0.0033

GRU

0.0000 0.0010 0.4725 0.0000 2.8622 0.0023 0.0006
2 0.0000 0.0018 0.4685 0.0000 4.7202 0.0057 0.0010
4 0.0000 0.0093 0.4532 0.0000 2.8042 0.0157 0.0068
10 0.0000 0.0019 0.4196 0.0000 2.8754 0.0038 0.0013

LSTM

0.0000 0.0000 0.4649 0.0000 5.6946 0.0000 0.0000
2 0.0000 0.0032 0.4352 0.0000 3.7309 0.0080 0.0020
4 0.0000 0.0027 0.4582 0.0000 6.57226 0.0138 0.0016
10 0.0000 0.0011 0.4553 0.0000 3.7037 0.0057 0.0006

Mini
GRU

0.0000 0.0067 0.6645 0.0000 3.6344 0.0047 0.0126
2 0.0115 0.0391 0.7030 1.1494 3.2739 0.0363 0.0447
4 0.0000 0.0021 0.6593 0.0000 3.4013 0.0018 0.0024
10 0.0000 0.0226 0.6793 0.0000 3.1345 0.0222 0.0253

Mini
LSTM

0.0000 0.0067 0.6398 0.0000 3.3153 0.0061 0.0077
2 0.0000 0.0084 0.6646 1.1494 3.4999 0.0095 0.0079
4 0.0115 0.0193 0.6673 0.0000 2.9899 0.0200 0.0191
10 0.0000 0.0109 0.6649 0.0000 5.2299 0.0073 0.0238

Loss plots for the minLSTM (Figure 6.5) indicate a reduced loss compared to the

GRU equivalent.

6.2.6 Inference Times

Models and baseline models were also compared in terms of inference time - the

time between passing a prompt to the model and receiving an output. This was

done for baselines by timing response times from Ollama after the model has been

cached to avoid any cold start-up latencies. Table 6.4 indicates that smaller RNN

models perform significantly faster in terms of inference for both short and long code

snippets.

Results & Discussion 56

Table 6.4: Depicts Inference Time of each model expressed in seconds, with respect
to small and large code snippets.

Model Inference Time
Large Code Snippet Small Code Snippet

RNN 0.0125 0.07495
LSTM 0.009375 0.0325
GRU 0.009 0.032525
MinGRU 0.0275 0.1885
MinLSTM 0.0221 0.2171
Starcoder2:3b 5.781 4.420
qwen2.5-coder 4.387 4.236

6.2.7 Example Outputs

Figures 6.6 to 6.10 present the model outputs for a simple program that checks if a

number is negative or not. All generations for this problem were incorrect however,

low perplexity models such as the LSTM, GRU, and minimal version show a greater

level of understanding and were able to generate a string.

va lue = −1
i f value < 0 then

print (" Negative ␣number ")
else

print ("Non−negat ive ␣number ")
end
<PROGRAM END>
FUNCTION_CALL(max_number) STRING(30) IDENTIFIER(lastName)
STRING(odd)

Figure 6.6: RNN generation output, has string as the second token, however with
such a high perplexity, it can be said the model is guessing.

Results & Discussion 57

value = −1
i f value < 0 then

print (" Negative ␣number ")
else

print ("Non−negat ive ␣number ")
end
<PROGRAM END>
STRING(odd) STRING(Yearning) STRING(odd) NUMBER(6)
STRING(odd) STRING(Light) STRING(c l e v e r)

Figure 6.7: GRU generation, showed some improvement and generated some strings
and a number

va lue = −1
i f value < 0 then

print (" Negative ␣number ")
else

print ("Non−negat ive ␣number ")
end
<PROGRAM END>
STRING(Cacophony) STRING(Dog) NUMBER(60) NUMBER(0)
STRING(slow) NUMBER(90) STRING(back) FUNCTION_CALL(cube)

Figure 6.8: LSTM generation was similar to GRU except generated a function call,
which aligns with the increased perplexity.

va lue = −1
i f value < 0 then

print (" Negative ␣number ")
else

print ("Non−negat ive ␣number ")
end
<PROGRAM END>
STRING(equal) STRING(r ep e a t un t i l) FUNCTION_CALL(math.floor)
STRING(r i s i n g) STRING(Lua) IDENTIFIER(b) IDENTIFIER(add)

Figure 6.9: MinLSTM generation, generated strings, identifiers and a function call
indicating high perplexity.

Results & Discussion 58

value = −1
i f value < 0 then

print (" Negative ␣number ")
else

print ("Non−negat ive ␣number ")
end
<PROGRAM END>
STRING(wet) STRING(c h i l l y) FUNCTION_CALL(string.upper)
STRING(Live) IDENTIFIER(temperature)

Figure 6.10: MinGRU output is very similar semantically to the MinLSTM.

6.3 Discussion

6.3.1 Dataset Collection

The first objective identified in Chapter One was curating a dataset of at least

500 samples of Lua code. During the course of this study, 677 samples of Lua were

collected; most of the samples were stand-alone functions or programs demonstrating

different aspects of Lua. The size of the dataset, however, was too small for the RNN

models to effectively learn the necessary patterns for Lua code output prediction, and

the models struggled to learn complex structures. Burgueño et al. (2021); Rahman,

Watanobe and Keita Nakamura (2020) and Reed and Freitas (2015) found that this

discrepancy could be attributed to data quality; specifically, code samples that were

meaningful enough for the model to learn how to interpret them. This study found

that code data available online, which was not tailored for code generation, often

is not meaningful enough for a model to learn semantics, since open source code

samples tend to be part of larger interconnected code bases, which could result in

more noise in the model training.

An alternative approach would be the use of more recent instruct datasets for code

generation, such as OpenCodeInstruct (Ahmad et al., 2025). Such a method may be

able to better guide the model in predicting the correct result, instructing it in the

right way.

Results & Discussion 59

6.3.2 Model Development

This research developed five RNN architectures and carried out experiments to de-

termine the feasibility of their use in emulating Lua execution. The findings show

that the tested models struggled to generalise and predict the outputs of Lua, which

is supported by previous studies that also observed similar results (Reed and Freitas,

2015).

Architecture Performance

Non-minimal RNN architectures, like the Standard RNN, GRU and LSTM, per-

formed worse than the minimal version, which suggests that these simpler architec-

tures have an advantage over the older, more specialised ones. This could be due to

simpler architectures improving gradient flow (Tessera, Hooker and Rosman, 2021),

and such reduces issues with gradients exploding or vanishing. An alternative ex-

planation for these results is that similar architectures can often act as an implicit

form of regularisation (Zhang et al., 2017). They show that simpler models are less

likely to overfit and, as a result, generalise better. Implicit regularisation could also

explain why the minGRU model performed marginally better than the minLSTM

model. Further research is required, to determine whether the performance gains

suggest that the gating mechanism affected the ability to remember variables.

The RNN appeared to perform the worst out of the three non-minimal architectures.

One factor which could explain this observation is that RNNs suffer from both van-

ishing and exploding gradients, which may have made it harder to learn longer, more

complex dependencies. This could lead to the model not generalising and failing to

learn the correct patterns.

Mixture of Experts

Results show that using a mixture of experts approach lowered the training and

validation loss of the tested models; however, interestingly, it had little effect on

how well the model generalised. This result is contrary to Chazan, Goldberger and

Gannot (2017), who found that MoE enhanced their speech recognition model to

Results & Discussion 60

achieve better results. It seems possible that MoE increased the model sparsity,

resulting in poor performance for more than two experts and therefore impeding

performance.

Alternative Architectures

In future investigations, it may be possible to use different model architectures to

achieve significantly better results. One approach would be to use an Encoder-

Decoder RNN structure with Cross-Attention, the Encoder-Decoder (Balog et al.,

2017). In the cited study, the researchers proved that this architecture is effective in

a code generation setting. Such an architecture could allow the model to separate the

task of understanding and generation and ensure the model becomes more specialised

in its task.

6.3.3 Interpreting Results

Generalisation vs Overfitting

All models showed clear signs of overfitting, evident in the disparity in training

and validation loss in Figures 6.1,6.2, 6.3, 6.5, and 6.4. Extensive regularisation

was attempted; however, it did not present enough improvement from regularisation

alone. The validation and training loss gap was consistent across all models, but

was narrowest in the minGRU, implying better generalisation, despite the use of

mechanisms like Attention and Mixture of Experts. The reasons for this have already

been discussed; however, most strikingly, even the minimal models failed to generalise

for Lua emulation, most likely due to the availability of a large amount of quality

Lua code for training.

Comparison with Baselines

Standard RNNs failed at the task of predicting any output correctly, confirming

their known limitations in handling long-term dependencies and vanishing gradi-

ents. GRU and LSTM showed slight improvements with lower perplexity; however,

they struggled with inference. MinGRU significantly outperformed the tested ar-

Results & Discussion 61

chitectures, reaching a 10× improvement in F1. The minLSTM followed closely,

achieving similar Pass@1 scores, but performed slightly worse in terms of F1 and

Perplexity.

Model EM SS F1 Prs Rcl
StarCoder2 0.0365 0.2376 0.1203 0.0994 0.2465
Qwen2.5Coder 0.9184 0.9744 0.9435 0.9357 0.9620

Table 6.5: Baseline Results for StarCoder and Qwen 2.5 Coder

Baseline model results are shown in Table 6.5, and show a substantial improvement

on the testing set. Both upper baseline models are transformer-based and use a

significantly larger amount of training data, which is one of the main reasons they

outperform the RNN models in this study. StarCoder2 underperforms Qwen due to

generating a lot of extra output, containing unneeded feedback, even after a large

amount of prompting.

Qwen shows impressive results in generating the correct output for provided pro-

grams, only failing on very complex examples involving complex tree structures like

recursion.

Errors and Limitations

All models struggled with perfect sequence prediction, indicating challenges in mod-

elling program semantics and associating input tokens with the output tokens.

A low F1 score suggests that all RNN models had issues with over-generation, even

if individual tokens are semantically plausible. Sentence similarly provided some

insight into the models predicting semantically correct tokens, this is evident in

Table 6.3 where cosine similarity reaches values in the range of 0.4 − 0.6. This does

not always indicate correctness, due to the semantics of the program, but can show

that some semantic tokens, such as "STRING()" and "NUMBER()", were correctly

identified. However, a better method, such as checking only the semantic tokens,

would have been a more beneficial approach.

Results & Discussion 62

6.3.4 Implications for the Real world

This study has shown that RNN models have a significantly faster inference time, and

therefore may show promising results for code generation and code output prediction,

should they be trained with more data and the presented alternative architectures.

Due to their faster inference times, RNN architectures may find use in embedded

systems or devices where latency is critical.

6.3.5 Limitations of Study

This study is limited in its dataset size, 677 samples likely limit the performance and

generalizability of the models. A larger, more diverse dataset may have provided

some improvements and increased validity.

Additionally, RNN architectures are known to struggle with complex tasks, such that

limiting the study to only single-unit models, where in each model’s case, a single

stand-alone unit of that model is used.

Finally, this study lacked any upper RNN baselines with which time compare against,

making the upper baselines a very challenging goal due to the complexity and re-

sources that large language models have to train.

Results & Discussion 63

Chapter 7

Conclusion

7.1 Findings

This study explored the viability of small models to emulate Lua compilation, with a

focus on RNN variants, more specifically the LSTM, GRU, Standard RNN and their

minimal variants (minGRU and minLSTM) to learn from input-output examples of

Lua code. Additionally, these models used an Attention and Mixture of Experts

approach to enhance their ability to learn more complex patterns. While these mod-

els demonstrated the capacity to predict some outputs, they fail to learn semantic

patterns and to generalise for complex tasks. The research found that the models are

too simple for such a complex task and overfit in almost all cases, despite extensive

regularisation techniques such as Label Smoothing and Dropout.

Standard RNN were found to perform the worst, consistently failing to predict the

outputs, and exhibiting the highest perplexity. The GRU and LSTM models per-

formed better than the RNN with a higher F1, but still failed to predict outputs; the

GRU demonstrated a lower perplexity than both the RNN and LSTM models. With

regards to predicting the correct number of output tokens, the LSTM performed

better than the GRU model.

Minimal architectures showed improvement over the standard models due to implicit

regularisation; the minGRU achieved a ten-fold improvement in F1 using 2 experts,

making some correct predictions on the validation set. The minLSTM performed

worse than the minGRU in terms of F1 and Perplexity scores.

64

A mixture of experts approach showed promising results in lowering the loss and

improved ability to generalise; however, exceeding 2 experts resulted in sparsity

issues in the models. Self-attention also showed benefits in lowering the training and

validation loss.

7.2 Contributions

This research contributes a novel perspective that RNNs are promising in a high-

performance setting where inference latency is a key factor. They achieve fast train-

ing and inference times, which can be useful in situations like embedded software

and in editor code completion tools. Additional contributions of this work are listed

below.

• Systematic Evaluation of RNN models and application of Minimal RNN archi-

tectures with MoE for code generation for Lua programs.

• Contextualises the trade-off between inference efficiency and output accuracy.

• Use of semantic embeddings to allow models to learn semantic features of a

language.

7.3 Limitations

This study has some limitations which may have influenced the results. The primary

limitation was that the tested models struggled to generalise completely to predict

Lua outputs. This may be attributed to architectural limitations of RNN models

failing to capture long-range dependencies and learn complex patterns. Future work

could explore more expressive architectures, such as encoder-decoder networks or

transformer architectures.

Another limitation lies in the lack of strong upper RNN baselines, there are very

few recent RNN models which are trained on Lua code, making the performance

gap between large transformer models seem particularly vast. One way this limita-

Conclusion 65

tion may be overcome is through the use of languages which are common for code

generation tasks, such as Python, where established benchmarks exist.

The dataset itself imposed constraints, consisting of 677 Lua programs, ranging from

simple to more complex. Each sample was stand-alone, and so the models could not

benefit from a broader context. As a result, the models only had the opportunity to

learn shallow-token-level patterns. To counteract the quality and size of the dataset,

an existing instruct dataset could have been used.

Finally, the choice of evaluation metrics may have limited the range of assumptions it

is possible to make from the research results. The chosen metrics provided a sufficient

overview of how well the models performed, however, they lacked expressiveness in

terms of the semantic understanding of the models.

7.4 Future Work

Further studies should consider training and evaluating a larger range of architec-

tures, such as the encoder-decoder architecture with cross-attention. These archi-

tectures could help separate concerns by assigning the task of understanding and

output generation to distinct components, improving generalisation.

In addition, reinforcement learning (RL) provides a promising avenue for reward-

ing the model during loss computations for correct and incorrect outputs, aligning

the model more closely to emulating compilation (Zaremba, Mikolov et al., 2016),

particularly in cases where token-level accuracy does not fully capture the program

semantics.

The study used a limited Lua dataset, which limited its approach. Further studies

should consider using a larger dataset with more semantic information, such as the

Instruct dataset (Ahmad et al., 2025), to more closely aid the model in reaching an

output.

Further investigation and experimentation into pre-training and fine-tuning is strongly

recommended. Pre-training could aid the model in learning syntax and semantics,

potentially leading to faster convergence. Subsequent fine-tuning could then help

Conclusion 66

the model in adapting its knowledge of language grammar towards execution emu-

lation. Such a method may also prevent the model from over-fitting and improve

generalisation.

7.5 Self-Reflection

Throughout the course of this research, there are many things that succeeded. The

project succeeded in evaluating models for code generation using attention and mix-

tures of experts, and gave an insight into the task of compiler emulation. It was also

advantageous in terms of software architecture and organisation, creating a reusable

evaluation system that effectively evaluates a range of architectures in a large-scale

machine learning system.

Conversely, this study has its drawbacks, which lie in the specific architecture se-

lection and range of data used. These drawbacks limited the study and provided

avenues for future work and development for compiler emulation.

Finally, to conclude the project provided many lessons, and enhanced personal un-

derstanding in the field of deep learning and language modelling sparking further

interest in the matter.

Conclusion 67

References

Afzal, Arshia et al. (2025). Linear Attention for Efficient Bidirectional Sequence
Modeling. arXiv: 2502.16249 [cs.LG]. url: https://arxiv.org/abs/2502.
16249 (cit. on p. 17).

Ahmad, Wasi Uddin et al. (2025). OpenCodeInstruct: A Large-scale Instruction Tun-
ing Dataset for Code LLMs. arXiv: 2504.04030 [cs.SE]. url: https://arxiv.
org/abs/2504.04030 (cit. on pp. 59, 66).

Akyürek, Ekin et al. (2024). In-Context Language Learning: Architectures and Al-
gorithms. arXiv: 2401.12973 [cs.CL]. url: https://arxiv.org/abs/2401.
12973 (cit. on p. 17).

Balog, Matej et al. (2017). ‘DeepCoder: Learning to Write Programs’. In: Proceedings
of ICLR’17. Microsoft. url: https://www.microsoft.com/en-us/research/
publication/deepcoder-learning-write-programs/ (cit. on pp. 14, 61).

Bengio, Yoshua et al. (2009). ‘Curriculum learning’. In: Proceedings of the 26th An-
nual International Conference on Machine Learning. ICML ’09. Montreal, Quebec,
Canada: Association for Computing Machinery, pp. 41–48. isbn: 9781605585161.
doi: 10.1145/1553374.1553380. url: https://doi.org/10.1145/1553374.
1553380 (cit. on p. 28).

Blelloch, Guy E. (1990). Prefix Sums and Their Applications. Tech. rep. CMU-CS-
90-190. "School of Computer Science, Carnegie Mellon University", pp. 35–60. doi:
10.1184/R1/6608579.V1. url: https://www.semanticscholar.org/paper/
Prefix-sums-and-their-applications-Blelloch/ (cit. on pp. 9, 12).

Bui, Nghi D. Q. et al. (2023). ‘CODETF: One-Stop Transformer Libary for State-Of-
The-Art Code LLM’. In: doi: https://doi.org/10.48550/arXiv.2306.00029.
url: https://arxiv.org/abs/2306.00029 (cit. on p. 17).

Burgueño, Loli et al. (May 2021). ‘A generic LSTM neural network architecture to
infer heterogeneous model transformations’. In: Software and Systems Modeling
21.1, p. 139. doi: 10.1007/s10270-021-00893-y (cit. on pp. 12, 14, 59).

Chazan, Shlomo E., Jacob Goldberger and Sharon Gannot (2017). ‘Deep recurrent
mixture of experts for speech enhancement’. In: 2017 IEEE Workshop on Applic-
ations of Signal Processing to Audio and Acoustics (WASPAA), pp. 359–363. doi:
10.1109/WASPAA.2017.8170055 (cit. on pp. 27, 60).

68

https://arxiv.org/abs/2502.16249
https://arxiv.org/abs/2502.16249
https://arxiv.org/abs/2502.16249
https://arxiv.org/abs/2504.04030
https://arxiv.org/abs/2504.04030
https://arxiv.org/abs/2504.04030
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2401.12973
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1184/R1/6608579.V1
https://www.semanticscholar.org/paper/Prefix-sums-and-their-applications-Blelloch/
https://www.semanticscholar.org/paper/Prefix-sums-and-their-applications-Blelloch/
https://doi.org/https://doi.org/10.48550/arXiv.2306.00029
https://arxiv.org/abs/2306.00029
https://doi.org/10.1007/s10270-021-00893-y
https://doi.org/10.1109/WASPAA.2017.8170055

Chen, Mark et al. (2021). ‘Evaluating Large Language Models Trained on Code’. In:
ArXiv abs/2107.03374. url: https://api.semanticscholar.org/CorpusID:
235755472 (cit. on pp. 17, 30).

Cho, Kyunghyun et al. (Oct. 2014). ‘Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation’. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed.
by Alessandro Moschitti, Bo Pang and Walter Daelemans. Doha, Qatar: Associ-
ation for Computational Linguistics, pp. 1724–1734. doi: 10.3115/v1/D14-1179.
url: https://aclanthology.org/D14-1179/ (cit. on p. 8).

Cummins, Chris, Dejan Grubisic, Rozière Baptiste et al. (2024). ‘Meta Large Lan-
guage Model Compiler: Foundation Models of Compiler Optimization’. In: url:
https : / / ai . meta . com / research / publications / meta - large - language -
model-compiler-foundation-models-of-compiler-optimization/ (cit. on
p. 2).

Cummins, Chris, Dejan Grubisic, Mostafa Elhoushi et al. (2023). ‘Large Language
Models for Compiler Optimization’. In: url: https://arxiv.org/abs/2309.
07062 (cit. on p. 17).

De, Soham et al. (2024). ‘Griffin: Mixing Gated Linear Recurrences with Local At-
tention for Efficient Language Models’. In: ArXiv abs/2402.19427. url: https:
//api.semanticscholar.org/CorpusID:268091246 (cit. on p. 17).

DeepSeek-AI (2025). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning. arXiv: 2501.12948 [cs.CL]. url: https://arxiv.org/
abs/2501.12948 (cit. on p. 27).

Feng, Leo, Frederick Tung, Mohamed Osama Ahmed et al. (Oct. 2024). Were RNNs
All We Needed? arXiv: 2410.01201 [cs.LG]. url: https://arxiv.org/abs/
2410.01201 (cit. on pp. 9, 11, 17, 26, 44, 45).

Feng, Leo, Frederick Tung, Hossein Hajimirsadeghi et al. (2024). ‘Attention as an
RNN’. In: arXiv preprint arXiv:2405.13956 (cit. on p. 27).

Graves, Alex et al. (Dec. 2014). ‘Neural Turing Machines’. In: url: https://arxiv.
org/abs/1410.5401 (cit. on pp. 12, 25).

Grossberg, Stephen (1987). ‘Competitive Learning: From Interactive Activation to
Adaptive Resonance’. In: Cognitive Science 11.1, pp. 23–63. doi: https://doi.
org/10.1111/j.1551-6708.1987.tb00862.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1551-6708.1987.tb00862.x. url: https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6708.1987.tb00862.x
(cit. on p. 10).

Grubisic, Dejan et al. (2024). ‘Priority Sampling of Large Language Models for Com-
pilers’. In: EuroMLSys ’24: Proceedings of the 4th Workshop on Machine Learning
and Systems. Association for Computing Machinery, pp. 91–97. doi: 10.1145/
3642970.3655831 (cit. on p. 17).

REFERENCES 69

https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/D14-1179/
https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/
https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/
https://arxiv.org/abs/2309.07062
https://arxiv.org/abs/2309.07062
https://api.semanticscholar.org/CorpusID:268091246
https://api.semanticscholar.org/CorpusID:268091246
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401
https://doi.org/https://doi.org/10.1111/j.1551-6708.1987.tb00862.x
https://doi.org/https://doi.org/10.1111/j.1551-6708.1987.tb00862.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6708.1987.tb00862.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6708.1987.tb00862.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6708.1987.tb00862.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6708.1987.tb00862.x
https://doi.org/10.1145/3642970.3655831
https://doi.org/10.1145/3642970.3655831

Hebb, D. O. (1950). ‘The organization of behavior: A neuropsychological theory.
New York: John Wiley and Sons, Inc., 1949. 335 p. $4.00’. In: Science Education
34.5, pp. 336–337. doi: https://doi.org/10.1002/sce.37303405110. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sce.37303405110.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.37303405110
(cit. on p. 10).

Hochreiter, S. and J. Schmidhuber (1997). ‘Long Short-Term Memory’. In: Neural
computation 9.8. ID: 1, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735 (cit.
on pp. 7, 11).

Hu, Zheyuan et al. (2024). ‘State-space models are accurate and efficient neural
operators for dynamical systems’. In: arXiv preprint arXiv:2409.03231 (cit. on
p. 18).

Ierusalimschy, Roberto and Luiz Henrique de Figueiredo (2009). ‘Interview about
Lua’. In: Masterminds of Programming: Conversations with the Creators of Major
Programming Languages. Ed. by Federico Biancuzzi and Shane Warden. O’Reilly
Media, pp. 175–190 (cit. on p. 28).

Imada, Keita and Katsuhiko Nakamura (2008). ‘Towards machine learning of gram-
mars and compilers of programming languages’. In: Proceedings of the 2008th
European Conference on Machine Learning and Knowledge Discovery in Databases
- Volume Part II. ECMLPKDD’08. Antwerp, Belgium: Springer-Verlag, pp. 98–
112. isbn: 3540874801. doi: 10.1007/978- 3- 540- 87481- 2_7. url: https:
//doi.org/10.1007/978-3-540-87481-2_7 (cit. on p. 2).

Jacobs, Robert A. et al. (1991). ‘Adaptive Mixtures of Local Experts’. In: Neural
Computation 3.1, pp. 79–87. doi: 10.1162/neco.1991.3.1.79 (cit. on pp. 10,
45).

Kaplan, Jared et al. (2020). ‘Scaling Laws for Neural Language Models’. In: CoRR
abs/2001.08361. arXiv: 2001.08361. url: https://arxiv.org/abs/2001.08361
(cit. on p. 51).

Kolen, John F and Stefan C Kremer (2001). A field guide to dynamical recurrent
networks. John Wiley & Sons (cit. on p. 49).

Laich, Larissa, Pavol Bielik and Martin Vechev (2020). ‘Guiding Program Synthesis
by Learning to Generate Examples’. In: International Conference on Learning
Representations. url: https://openreview.net/forum?id=BJl07ySKvS (cit. on
pp. 14, 15).

Leather, H. and C. Cummins (2020). ‘Machine Learning in Compilers: Past, Present
and Future’. In: 2020 Forum for Specification and Design Languages (FDL). ID:
1, pp. 1–8. isbn: 1636-9874. doi: 10.1109/FDL50818.2020.9232934 (cit. on p. 2).

Liu, Fusheng and Qianxiao Li (2024). From Generalization Analysis to Optimization
Designs for State Space Models. arXiv: 2405.02670 [cs.LG]. url: https://
arxiv.org/abs/2405.02670 (cit. on p. 17).

REFERENCES 70

https://doi.org/https://doi.org/10.1002/sce.37303405110
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sce.37303405110
https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.37303405110
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-540-87481-2_7
https://doi.org/10.1007/978-3-540-87481-2_7
https://doi.org/10.1007/978-3-540-87481-2_7
https://doi.org/10.1162/neco.1991.3.1.79
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=BJl07ySKvS
https://doi.org/10.1109/FDL50818.2020.9232934
https://arxiv.org/abs/2405.02670
https://arxiv.org/abs/2405.02670
https://arxiv.org/abs/2405.02670

Luccioni, Alexandra Sasha, Sylvain Viguier and Anne-Laure Ligozat (2022). Estim-
ating the Carbon Footprint of BLOOM, a 176B Parameter Language Model. arXiv:
2211.02001 [cs.LG]. url: https://arxiv.org/abs/2211.02001 (cit. on p. 33).

Noh, Seol-Hyun (2021). ‘Analysis of Gradient Vanishing of RNNs and Performance
Comparison’. In: Information 12.11. issn: 2078-2489. doi: 10.3390/info12110442.
url: https://www.mdpi.com/2078-2489/12/11/442 (cit. on p. 26).

Parnichkun, Rom N. et al. (2024). State-Free Inference of State-Space Models: The
Transfer Function Approach. arXiv: 2405.06147 [cs.LG]. url: https://arxiv.
org/abs/2405.06147 (cit. on p. 17).

Patwardhan, Narendra, Stefano Marrone and Carlo Sansone (Apr. 2023). ‘Trans-
formers in the Real World: A Survey on NLP Applications’. In: Information 14.4.
doi: 10.3390/info14040242 (cit. on p. 11).

Priya, Renita et al. (2017). ‘A Deep Dive into Automatic Code Generation Using
Character Based Recurrent Neural Networks’. In: 2017 International Conference
on Computational Science and Computational Intelligence (CSCI), pp. 369–374.
doi: 10.1109/CSCI.2017.61 (cit. on pp. 12, 14, 25).

Rahman, Md. Mostafizer, Yutaka Watanobe and Keita Nakamura (2020). ‘A Neural
Network Based Intelligent Support Model for Program Code Completion’. In: Sci.
Program. 2020, 7426461:1–7426461:18. url: https://api.semanticscholar.
org/CorpusID:225584181 (cit. on pp. 12, 14, 15, 25, 29, 59).

Reed, Scott and Nando De Freitas (2015). ‘Neural Programmer-Interpreters’. In:
url: http://arxiv.org/abs/1511.06279 (cit. on pp. 14, 15, 25, 28, 59, 60).

Sieber, Jerome et al. (2024). Understanding the differences in Foundation Models:
Attention, State Space Models, and Recurrent Neural Networks. arXiv: 2405.15731
[cs.LG]. url: https://arxiv.org/abs/2405.15731 (cit. on p. 17).

Strubell, Emma, Ananya Ganesh and Andrew McCallum (July 2019). ‘Energy and
Policy Considerations for Deep Learning in NLP’. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Ed. by Anna
Korhonen, David Traum and Lluís Màrquez. Florence, Italy: Association for Com-
putational Linguistics, pp. 3645–3650. doi: 10.18653/v1/P19-1355. url: https:
//aclanthology.org/P19-1355/ (cit. on p. 33).

Tessera, Kale-ab, Sara Hooker and Benjamin Rosman (2021). ‘Keep the gradients
flowing: Using gradient flow to study sparse network optimization’. In: arXiv pre-
print arXiv:2102.01670 (cit. on p. 60).

Vaswani, Ashish et al. (2017). ‘Attention Is All You Need’. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. Long Beach,
California, USA: Curran Associates Inc., pp. 6000–6010. doi: 10.5555/3295222.
3295349. url: http://arxiv.org/abs/1706.03762 (cit. on pp. 11, 27).

REFERENCES 71

https://arxiv.org/abs/2211.02001
https://arxiv.org/abs/2211.02001
https://doi.org/10.3390/info12110442
https://www.mdpi.com/2078-2489/12/11/442
https://arxiv.org/abs/2405.06147
https://arxiv.org/abs/2405.06147
https://arxiv.org/abs/2405.06147
https://doi.org/10.3390/info14040242
https://doi.org/10.1109/CSCI.2017.61
https://api.semanticscholar.org/CorpusID:225584181
https://api.semanticscholar.org/CorpusID:225584181
http://arxiv.org/abs/1511.06279
https://arxiv.org/abs/2405.15731
https://arxiv.org/abs/2405.15731
https://arxiv.org/abs/2405.15731
https://doi.org/10.18653/v1/P19-1355
https://aclanthology.org/P19-1355/
https://aclanthology.org/P19-1355/
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.5555/3295222.3295349
http://arxiv.org/abs/1706.03762

Zaremba, Wojciech, Tomas Mikolov et al. (June 2016). ‘Learning Simple Algorithms
From Examples’. In: The 33rd International Conference on Machine Learning,
48:421–429. doi: 10.48550/arXiv.1511.07275 (cit. on pp. 12, 25, 26, 28, 66).

Zaremba, Wojciech and Ilya Sutskever (Oct. 2014). ‘Learning to Execute’. In: arXiv
(Cornell University). doi: 10.48550/arxiv.1410.4615. url: https://arxiv.
org/abs/1410.4615 (cit. on pp. 12, 15, 25).

Zhang, Chiyuan et al. (2017). Understanding deep learning requires rethinking gen-
eralization. arXiv: 1611.03530 [cs.LG]. url: https://arxiv.org/abs/1611.
03530 (cit. on p. 60).

Zhao, Yunmei et al. (2023). ‘An interpretable LSTM deep learning model predicts
the time-dependent swelling behavior in CERCER composite fuels’. In: Materials
Today Communications 37, p. 106998. issn: 2352-4928. doi: https://doi.org/
10.1016/j.mtcomm.2023.106998. url: https://www.sciencedirect.com/
science/article/pii/S2352492823016896 (cit. on p. 25).

REFERENCES 72

https://doi.org/10.48550/arXiv.1511.07275
https://doi.org/10.48550/arxiv.1410.4615
https://arxiv.org/abs/1410.4615
https://arxiv.org/abs/1410.4615
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://doi.org/https://doi.org/10.1016/j.mtcomm.2023.106998
https://doi.org/https://doi.org/10.1016/j.mtcomm.2023.106998
https://www.sciencedirect.com/science/article/pii/S2352492823016896
https://www.sciencedirect.com/science/article/pii/S2352492823016896

Appendix

Acronyms
ANC Adaptive Neural Compilation
AST Abstract Syntax Tree
BLEU Bilingual Evaluation Understudy
BPTT Backpropagation Through Time
CoT Chain of Thought
CNN Convolutional Neural Network
DSL Domain Specific Language
GAN Generative Adversarial Network
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MinLSTM Minimal Long Short-Term Memory
MLP Multi-Layer Perceptron
NLP Natural Language Processing
NPI Neural Programmer-Interpreters
PoT Program of Thought
RAG Retrieval Augmented Generation
RNN Recurrent Neural Network

REFERENCES 73

	Introduction
	Motivation
	Code Execution and Generation
	Rationale
	Current Work
	Problems in Current Research

	Aims & Objectives
	Objectives

	Dissertation Structure

	Literature Review
	Background
	Recurrent Neural Networks
	Standard RNN
	Long-Short Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	MinLSTM and MinGRU

	Mixture of Experts

	Related Works
	RNNs in Code-Related Tasks
	Methodologies
	Evaluation Metrics
	Limitations

	Transformer Models
	Limitations

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements
	Hardware Considerations
	Software Requirements

	Design & Methodology
	Research Philosophy
	Project Management
	System Design
	System Architecture

	Model Selection
	RNN
	LSTM
	GRU
	MinLSTM and MinGRU
	Mixture of Experts
	Attention
	Hyperparameter Tuning

	Dataset
	Curriculum Learning
	Lua Semantics

	Benchmarking
	Evaluation Metrics
	Baseline Models

	Overview of Experiments
	Ethical Considerations
	Risk Management

	Implementation
	Development Environment and Tools
	Language Parsing
	Building Data
	Semantic Tokenisation

	Dataset
	Data Splitting
	Building the Vocabulary

	Training Pipeline
	Language Model
	Training
	Sampling
	Check-pointing

	Language Model Hyperparameter Tuning

	Model Implementation
	RNN
	LSTM and GRU
	MinGRU and MinLSTM
	Mixture of Experts
	Attention

	Evaluation
	Sample K

	Challenges
	Overfitting
	Label Smoothing
	L2 Regularisation
	Dropout
	Teacher Forcing
	Learning Rate Scheduling

	Data Quality

	Results & Discussion
	Computational Performance and Resources
	Results
	RNN Performance
	GRU Performance
	LSTM Performance
	MinGRU Performance
	MinLSTM Performance
	Inference Times
	Example Outputs

	Discussion
	Dataset Collection
	Model Development
	Architecture Performance
	Mixture of Experts
	Alternative Architectures

	Interpreting Results
	Generalisation vs Overfitting
	Comparison with Baselines
	Errors and Limitations

	Implications for the Real world
	Limitations of Study

	Conclusion
	Findings
	Contributions
	Limitations
	Future Work
	Self-Reflection

	References

